## ----include = FALSE---------------------------------------------------------- set.seed(100) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = rmarkdown::pandoc_available() ) ## ----reading_titers----------------------------------------------------------- # Load the Racmacs package library(Racmacs) # Set an option for the number of computer cores to run in parallel when optimizing maps # The default when running on CRAN is to use 2 options(RacOptimizer.num_cores = 1) # However you can also set the number of cores to the maximum number like this # options(RacOptimizer.num_cores = parallel::detectCores()) # Read in the titer table path_to_titer_file <- system.file("extdata/h3map2004_hitable.csv", package = "Racmacs") titer_table <- read.titerTable(path_to_titer_file) ## ----------------------------------------------------------------------------- print(titer_table[1:5,1:7]) ## ----making_an_acmap---------------------------------------------------------- # Create the acmap object, specifying the titer table map <- acmap( titer_table = titer_table ) ## ----optimizing_an_acmap------------------------------------------------------ # Perform some optimization runs on the map object to try and determine a best map map <- optimizeMap( map = map, number_of_dimensions = 2, number_of_optimizations = 500, minimum_column_basis = "none" ) ## ----plotting_an_acmap, fig.width=10, fig.height=6, out.width="100%", fig.retina=TRUE---- plot(map) ## ----viewing_an_acmap, out.width = '100%'------------------------------------- view(map) ## ----making_a_3d_map, out.width = '100%'-------------------------------------- # Make the acmap object and run optimizations map3d <- make.acmap( titer_table = titer_table, number_of_dimensions = 3, number_of_optimizations = 500, minimum_column_basis = "none" ) # View the result view(map3d)