--- title: "Spatial Utility Functions" author: "Rob Williams" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Spatial Utility Functions} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 3, fig.align = 'center' ) ## old graphical parameters oldpar <- par(mfrow = c(1,2)) ``` This package contains convenience functions for carrying out GIS operations that I have repeatedly encountered in my research. The following packages are used in this vignette: ```{r setup, message = FALSE, warning = FALSE, results = 'hide'} library(sf) library(raster) library(RWmisc) ``` # Weighting raster values by overlapping polygons The `overlap.weight` function allows you to weight the values of a raster cell by the inverse of the number of polygons that overlap the cell. This is useful when, e.g., calculating the population of ethnic group settlement areas when different group settlement areas can overlap one another. The `count` argument allows the count of overlapping polygons to be returned instead of the weighted cell values. Note that this converts any cells not covered by at least one polygon to `NA`. ```{r overlap-weight} ## create three overlapping squares polys_t <- st_sfc(list(st_polygon(list(rbind(c(2,2), c(2,6), c(6,6), c(6,2), c(2, 2)))), st_polygon(list(rbind(c(8,8), c(4,8), c(4,4), c(8,4), c(8,8)))), st_polygon(list(rbind(c(3,3), c(3,7), c(7,7), c(7,3), c(3,3))))), crs = st_crs('OGC:CRS84')) ## create raster raster_t <- raster(nrows = 6, ncols = 6, xmn = 2, xmx = 8, ymn = 2, ymx = 8, vals = 1:36, crs = CRS(st_crs(polys_t)$proj4string)) ## set plotting parameters par(mfrow = c(1, 3)) ## plot raw raster values plot(raster_t, main = 'raw') plot(polys_t, add = TRUE) ## plot count of overlapping polygons plot(overlap.weight(raster_t, polys_t, count = TRUE), main = "count") plot(polys_t, add = TRUE) ## plot overlap-weighted raster values plot(overlap.weight(raster_t, polys_t), main = "weighted") plot(polys_t, add = TRUE) ``` # Projecting spatial objects to UTM The `projectUTM` function converts any `sf` or `sfc` objects in longitude, latitude decimal degrees to the UTM zone where the majority of the data lie. This function accounts for North and South UTM zones as well. ```{r projectUTM} ## read in North Carolina shapefile nc <- st_read(system.file("shape/nc.shp", package="sf")) ## transform crs to WGS84 and inspect CRS nc <- st_transform(nc, st_crs('OGC:CRS84')) st_crs(nc) ## project to UTM and inspect CRS st_crs(projectUTM(nc)) ``` Projection of the North Carolina polygons can be further seen by plotting them. ```{r projectUTM-plot} ## set plotting parameters par(mfrow = c(1, 2), mar = rep(0, 4)) ## plot WGS84 and UTM projected North Carolina plot(nc$geometry) plot(projectUTM(nc)$geometry) ``` # Maximum and minimum distance from point(s) to a polygon The `point.poly.dist` function computes the maximum or minimum distance from a point or set of points to a polygon. It correctly calculates distances for both geographic and projected data. ```{r point-poly-dist} ## create north carolina centroids nc_centroids <- st_centroid(nc) ## calculate maximum distance point.poly.dist(nc_centroids[53,]$geometry, nc[53,]$geometry, max = TRUE) ``` The following illustration depicts the line connecting the centroid of the polygon to the farthest point on the polygon (red) and the nearest point on the polygon (blue). ```{r point-poly-dist-illus} nc_points <- st_geometry(nc[53,]) %>% st_cast('POINT') farthest_ind <- st_distance(nc_points, nc_centroids[53,]) %>% which.max() farthest_point <- rbind(st_coordinates(nc_points[farthest_ind]), st_coordinates(nc_centroids[53,])) %>% st_linestring() nearest_ind <- st_distance(nc_points, nc_centroids[53,]) %>% which.min() nearest_point <- rbind(st_coordinates(nc_points[nearest_ind]), st_coordinates(nc_centroids[53,])) %>% st_linestring() ## plot par(mar = rep(0,4)) plot(nc[53,]$geometry) plot(nc_centroids[53,]$geometry, add = TRUE) plot(farthest_point, add = TRUE, col = 'red') plot(nearest_point, add = TRUE, col = 'blue') ``` Carrying out the same calculations using built-in `sf` functions takes roughly twice as long to execute. ```{r point-poly-dist-benchmark} microbenchmark::microbenchmark(pk = point.poly.dist(nc_centroids[53,]$geometry, nc[53,]$geometry, max = TRUE), sf = st_distance(st_cast(st_geometry(nc[53,]), 'POINT')[farthest_ind], nc_centroids[53,]), times = 100) ``` ```{r oldpar, echo = FALSE} par(oldpar) ```