ProSGPV: Penalized Regression with Second-Generation P-Values

Implementation of penalized regression with second-generation p-values for variable selection. The algorithm can handle linear regression, GLM, and Cox regression. S3 methods print(), summary(), coef(), predict(), and plot() are available for the algorithm. Technical details can be found at Zuo et al. (2021) <doi:10.1080/00031305.2021.1946150>.

Version: 1.0.0
Depends: R (≥ 3.5.0), glmnet, brglm2
Imports: MASS, survival
Suggests: rmarkdown, knitr
Published: 2021-08-06
DOI: 10.32614/CRAN.package.ProSGPV
Author: Yi Zuo ORCID iD [aut, cre], Thomas Stewart [aut], Jeffrey Blume [aut]
Maintainer: Yi Zuo <yi.zuo at vanderbilt.edu>
BugReports: https://github.com/zuoyi93/ProSGPV/issues
License: GPL-3
URL: https://github.com/zuoyi93/ProSGPV
NeedsCompilation: no
Materials: README NEWS
CRAN checks: ProSGPV results

Documentation:

Reference manual: ProSGPV.pdf
Vignettes: ProSGPV in GLM and Cox models (source, R code)
ProSGPV in linear regression (source, R code)

Downloads:

Package source: ProSGPV_1.0.0.tar.gz
Windows binaries: r-devel: ProSGPV_1.0.0.zip, r-release: ProSGPV_1.0.0.zip, r-oldrel: ProSGPV_1.0.0.zip
macOS binaries: r-release (arm64): ProSGPV_1.0.0.tgz, r-oldrel (arm64): ProSGPV_1.0.0.tgz, r-release (x86_64): ProSGPV_1.0.0.tgz, r-oldrel (x86_64): ProSGPV_1.0.0.tgz
Old sources: ProSGPV archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ProSGPV to link to this page.