## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # set.seed(2024) # set a random seed for reproducibility. # library(ProFAST) # load the package of FAST method # data(CosMx_subset) # CosMx_subset ## ----eval = FALSE------------------------------------------------------------- # library(Seurat) ## ----eval = FALSE------------------------------------------------------------- # CosMx_subset <- NormalizeData(CosMx_subset) ## ----eval = FALSE------------------------------------------------------------- # CosMx_subset <- FindVariableFeatures(CosMx_subset) ## ----eval = FALSE, fig.width= 6, fig.height= 4.5------------------------------ # dat_cor <- diagnostic.cor.eigs(CosMx_subset) # q_est <- attr(dat_cor, "q_est") # cat("q_est = ", q_est, '\n') ## ----eval = FALSE------------------------------------------------------------- # pos <- as.matrix(CosMx_subset@meta.data[,c("x", "y")]) # Extract the spatial coordinates # Adj_sp <- AddAdj(pos) ## calculate the adjacency matrix # CosMx_subset <- NCFM_fast(CosMx_subset, Adj_sp = Adj_sp, q = q_est) # CosMx_subset ## ----eval = FALSE------------------------------------------------------------- # CosMx_subset <- pdistance(CosMx_subset, reduction = "fast") ## ----eval = FALSE------------------------------------------------------------- # print(table(CosMx_subset$cell_type)) # Idents(CosMx_subset) <- CosMx_subset$cell_type # df_sig_list <- find.signature.genes(CosMx_subset) # str(df_sig_list) ## ----eval = FALSE------------------------------------------------------------- # dat <- get.top.signature.dat(df_sig_list, ntop = 2, expr.prop.cutoff = 0.1) # head(dat) ## ----eval = FALSE, fig.width=10,fig.height=7---------------------------------- # CosMx_subset <- coembedding_umap( # CosMx_subset, reduction = "fast", reduction.name = "UMAP", # gene.set = unique(dat$gene)) ## ----eval = FALSE, fig.width=8,fig.height=5----------------------------------- # ## choose beutifual colors # cols_cluster <- c("black", PRECAST::chooseColors(palettes_name = "Blink 23", n_colors = 21, plot_colors = TRUE)) # p1 <- coembed_plot( # CosMx_subset, reduction = "UMAP", # gene_txtdata = subset(dat, label=='tumor 5'), # cols=cols_cluster, pt_text_size = 3) # p1 ## ----eval = FALSE, fig.width=9,fig.height=6----------------------------------- # p2 <- coembed_plot( # CosMx_subset, reduction = "UMAP", # gene_txtdata = dat, cols=cols_cluster, # pt_text_size = 3, alpha=0.2) # p2 ## ----eval = FALSE, fig.width=9,fig.height=6----------------------------------- # cols_type <- cols_cluster[-1] # names(cols_type)<- sort(levels(Idents(CosMx_subset))) # DimPlot(CosMx_subset, reduction = 'UMAP', cols=cols_type) ## ----eval = FALSE, fig.width=8,fig.height=3.6--------------------------------- # FeaturePlot(CosMx_subset, reduction = 'UMAP', features = c("PSCA", "CEACAM6")) ## ----------------------------------------------------------------------------- sessionInfo()