--- title: "Precipitation forecasts" author: "Patrick Schmidt" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: fig_caption: yes vignette: > %\VignetteIndexEntry{Precipitation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Data ```{r, fig.show='hold', fig.width = 6, fig.cap = 'Time series of one-day ahead HRES Precipitation forecasts (crosses) and respective observations (solid line) over London.'} library(PointFore) library(ggplot2) library(lubridate) precipitation$Date <- as.Date(row.names(precipitation),format = "%d-%m-%Y") ggplot(subset(precipitation, month(Date)< 7 & year(Date)==2013))+ geom_line(aes(x=Date,y=Y))+ geom_point(aes(x=Date,y=X), color = 'red', size = 2, shape=4) ``` For more information on the data see `?precipitation`. # Analysis Now, let us analyse the forecasts. We begin with the constant expectile model. ```{r, fig.show='hold', fig.cap = 'Constant expectile analysis.'} instruments <- c("lag(lag(Y))","X") res <- estimate.functional(iden.fct = expectiles, model = constant, instruments = instruments, Y = precipitation$Y, X=precipitation$X) summary(res) plot(res,hline = TRUE) ``` Optimality is rejected with a p-value of `r round(summary(res$gmm)$stest$test[2],digits=2)`. On average the forecast tends to overestimation compared to an optimal mean forecast with an expectile level of `r round(summary(res$gmm)$coefficients[1],digits=2)`. Next, we consider state-dependent forecasting behavior. Instead of using the conventional state-dependence models we rely on the linear probit specification model but enforce an expectile level of $0$ for the forecast $0$. This is a logical consequence of precipitation being a positive random variable. ```{r, fig.show='hold', fig.cap = 'linear probit model.'} probit0 <- function(stateVariable,theta) probit_linear(stateVariable, theta)*(stateVariable>0) res <- estimate.functional(iden.fct = expectiles , model = probit0, theta0 = c(0,0), instruments = instruments, state = precipitation$X, Y = precipitation$Y, X=precipitation$X) summary(res) ``` To replicate the result plot in the paper , we need to adjust the standard plot function of the PointFore package to the probit0 specification model. ```{r, fig.show='hold', fig.cap = 'Plot linear probit model.'} plot(res,limits = c(0.001,15),hline = TRUE)+ geom_point(data=data.frame(x=c(0,0),y=c(0,.395),shape=c(1,2)), aes(x=x,y=y,shape=as.factor(shape)), ,size=3,show.legend = FALSE)+ scale_shape_manual(values=c(16,1)) ```