## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- fig.show='hold', fig.width = 6, fig.cap = 'Time series of one-quarter ahead Greenbook forecasts (crosses) and respective observations (solid line) of real GDP growth in the US.'---- library(PointFore) library(ggplot2) ggplot(GDP)+ geom_line(aes(x=date,y=observation))+ geom_point(aes(x=date,y=forecast), color = 'red', size = 2, shape=4) ## ---- fig.show='hold', fig.width = 6, fig.cap = 'Time series of difference between the two considered forecasts.'---- ggplot(GDP)+ geom_line(aes(x=date,y=forecast-forecast_late), color = 'red',alpha=.5)+ geom_point(aes(x=date,y=forecast-forecast_late), color = 'red', size = .5, shape=4)+ ylim(-10,10) ## ---- fig.show='hold', fig.cap = 'Constant quantile analysis for the main forecast.'---- res <- estimate.functional(model = constant, state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) ## ---- fig.show='hold', fig.cap = 'Constant quantile analysis for the main forecast.'---- res <- estimate.functional(model = constant, instruments = c("lag(lag(Y))","X"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) ## ---- fig.show='hold', fig.cap = 'Constant quantile analysis for the late forecast.'---- res <- estimate.functional(model = constant, state = GDP$forecast_late, Y=GDP$observation,X=GDP$forecast_late) summary(res) car::linearHypothesis(res$gmm,"Theta[1]=.5") ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit) link that depends on the current forecast.'---- res <- estimate.functional(model = probit_linear, state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit link) that depends on the current forecast with instruments $w_t=(1, Y_{t-1}, Y_{t-2})$.'---- res <- estimate.functional(model = probit_linear, instruments = c("lag(Y)","lag(lag(Y))"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit link) that depends on the current forecast with instruments $w_t=(1, X_t, X_{t-1})$.'---- res <- estimate.functional(model = probit_linear, instruments = c( "X", "lag(X)"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit link) that depends on the current forecast with instruments $w_t=(1, X_t, Y_{t-2})$.'---- res <- estimate.functional(model = probit_linear, instruments = c( "X", "lag(lag(Y))"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit link) that depends on the current forecast with instruments $w_t=(1, X_t, X_{t-1} - Y_{t-1}, (X_{t-1} - Y_{t-1})^2, X_{t-1}, X_{t-2} - Y_{t-2}, (X_{t-2} - Y_{t-2})^2$.'---- res <- estimate.functional(model = probit_linear, instruments = c( "X", "lag(X-Y)", "lag(X-Y)^2", "lag(X)", "lag(lag(X-Y))", "lag(lag(X-Y))^2"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res) plot(res,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a quadratic and a cubic spline model (with probit link) that depends on the current forecast.'---- res_quadratic <- estimate.functional(model = probit_spline2, instruments = c( "X", "lag(X-Y)", "lag(X-Y)^2", "lag(X)", "lag(lag(X-Y))", "lag(lag(X-Y))^2"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res_quadratic) res_cubic <- estimate.functional(model = probit_spline3, instruments = c( "X", "lag(X-Y)", "lag(X-Y)^2", "lag(X)", "lag(lag(X-Y))", "lag(lag(X-Y))^2"), state = GDP$forecast, Y=GDP$observation,X=GDP$forecast) summary(res_cubic) plot(res_quadratic,hline = TRUE) plot(res_cubic,hline = TRUE) ## ---- fig.show='hold', fig.cap = 'State-dependent quantile analysis with a linear model (with probit) link that depends on the lagged observation.'---- res <- estimate.functional(model = probit_linear, state = lag(GDP$observation), Y=GDP$observation,X=GDP$forecast) summary(res) #plot(res,hline = TRUE)