## ----setup, include = FALSE--------------------------------------------------- # Make results reproducible set.seed(1) knitr::opts_chunk$set(cache = FALSE) options(digits = 4) library(ggplot2) library(data.table) library(POUMM) ## ---- include=FALSE, eval=TRUE------------------------------------------------ N <- 500 g0 <- 0 alpha <- .5 theta <- 2 sigma <- 0.2 sigmae <- 0.2 data(vignetteCachedResults) list2env(vignetteCachedResults, globalenv()) ## ----RestorePruneInfo, echo=FALSE, warning=FALSE, results="hide", message=FALSE, eval=TRUE---- # restore the pruneInfo since it is needed afterwards. fitPOUMM$pruneInfo <- fitPOUMM2$pruneInfo <- fitH2tMean$pruneInfo <- pruneTree(tree, z[1:length(tree$tip.label)]) ## ---- include=TRUE, eval=TRUE, echo=TRUE-------------------------------------- N <- 500 g0 <- 0 alpha <- .5 theta <- 2 sigma <- 0.2 sigmae <- 0.2 ## ----------------------------------------------------------------------------- specPMM <- specifyPMM(z[1:N], tree) fitPMM <- POUMM(z[1:N], tree, spec = specPMM, doMCMC=FALSE) ## ----------------------------------------------------------------------------- lmtest::lrtest(fitPMM, fitPOUMM2) ## ----------------------------------------------------------------------------- gBM <- rVNodesGivenTreePOUMM(tree, g0, alpha = 0, theta = 0, sigma = sigma) zBM <- gBM + e fitPMM_on_zBM <- POUMM(zBM[1:N], tree, spec = specPMM, doMCMC = FALSE) fitPOUMM_on_zBM <- POUMM(zBM[1:N], tree, doMCMC = FALSE) lmtest::lrtest(fitPMM_on_zBM, fitPOUMM_on_zBM) ## ---- message=FALSE, warning=FALSE, eval=TRUE--------------------------------- specH2tMean <- specifyPOUMM_ATH2tMeanSeG0(z[1:N], tree, nSamplesMCMC = 4e5) # Mapping from the sampled parameters to the standard POUMM parameters: specH2tMean$parMapping # Prior for the MCMC sampling specH2tMean$parPriorMCMC # Bounds for the maximum likelihood search specH2tMean$parLower specH2tMean$parUpper ## ----eval=FALSE--------------------------------------------------------------- # fitH2tMean <- POUMM(z[1:N], tree, spec = specH2tMean) ## ---- fig.height=5.4, fig.show="hold", fig.width=7.2, warning=FALSE----------- plot(fitH2tMean, stat = c("H2tMean", "H2e", "H2tInf", "sigmae"), doZoomIn = TRUE, doPlot = TRUE) ## ---- warning=FALSE----------------------------------------------------------- summary(fitH2tMean)[stat %in% c("H2tMean", "H2e", "H2tInf", "sigmae")] ## ----------------------------------------------------------------------------- # Compare global empirical heritability H2eGlobal <- H2e(z[1:N], sigmae = coef(fitH2tMean)['sigmae']) # versus recent empirical heritability H2eRecent <- H2e(z[1:N], tree, sigmae = coef(fitH2tMean)['sigmae'], tFrom = 5) print(c(H2eGlobal, H2eRecent))