## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(PKNCA) library(knitr) library(ggplot2) scale_colour_discrete <- scale_colour_hue scale_fill_discrete <- scale_fill_hue scale_colour_ordinal <- scale_colour_hue scale_fill_ordinal <- scale_fill_hue ## ----superposition, error=TRUE------------------------------------------------ library(PKNCA) theoph_corrected <- as.data.frame(datasets::Theoph) theoph_corrected$conc[theoph_corrected$Time == 0] <- 0 conc_obj <- PKNCAconc(theoph_corrected, conc~Time|Subject) steady_state <- superposition(conc_obj, dose.times = seq(0, 168 - 12, by=12), tau=168, n.tau=1) # Add some noise to the data so that it seems more reasonable steady_state_noise <- steady_state steady_state_noise$conc <- withr::with_seed( seed = 5, steady_state_noise$conc*exp(rnorm(nrow(steady_state_noise), mean = 0, sd = 0.1)) ) ## ----superposition-fig-------------------------------------------------------- library(ggplot2) ggplot(steady_state_noise, aes(x=time, y=conc, groups=Subject)) + geom_line() ## ----tss-mono----------------------------------------------------------------- tss_mono <- pk.tss.monoexponential( conc = steady_state_noise$conc, time = steady_state_noise$time, subject = steady_state_noise$Subject, time.dosing = seq(0, 168 - 12, by=12) ) tss_mono ## ----tss-step----------------------------------------------------------------- tss_step <- pk.tss.stepwise.linear( conc = steady_state_noise$conc, time = steady_state_noise$time, subject = steady_state_noise$Subject, time.dosing = seq(0, 168 - 12, by=12) ) tss_step