## ---- message=FALSE, warning=FALSE------------------------------------------- library(OptCirClust) X = rgamma(70, 6) K = 7 frame.size = 50 ## ---- message=FALSE, warning=FALSE------------------------------------------- # Our recommended method is the fast and optimal linear.polylog: result_linear.polylog <- FramedClust(X, K, frame.size, method = "linear.polylog") # The slow and optimal via repeatedly calling Ckmeans.1d.dp: result_Ckmeans.1d.dp <- FramedClust(X, K, frame.size, method = "Ckmeans.1d.dp") # The slow and heuristic via repeatedly calling kmeans: result_kmeans <- FramedClust(X, K, frame.size, method = "kmeans") ## ---- message=FALSE, warning=FALSE, fig.width = 5, fig.asp = .92------------- plot(result_linear.polylog, main = "linear.polylog: optimal\n***Recommended***") plot(result_Ckmeans.1d.dp, main = "Repeated Ckmeans.1d.dp: quadratic time\nalways optimal") plot(result_kmeans, main = "Repeated kmeans: heuristic\nnot always optimal")