--- title: "Mindat Data" author: "Xiang Que" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Mindat Data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Load libraries ```{r} #library(httr) #library(jsonlite) #library(OpenMindat) #library(tidyverse) #library(sf) #library(mapview) ``` ## Connect to the Mindat API ```{r} #mindat_connection("3214e7170011236535c9a6e17d4ebd69", page_size = 1500) ``` ## Demo 1- Map the retieved Localities that contains As ```{r} #mapview(localities_list_elems_inc(c("As")), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE)#"Dy","Li" ``` ## Demo 2- Map the retieved Localities within an given country ```{r} #mapview(localities_list_country(c("Sweden")), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE) ``` ## Demo 3- Map the retieved Localities that contains the input description. ```{r} #mapview(localities_list_description("volcano"), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE) ``` ## Demo 4- Map the retieved Localities that contains the input description. ```{r} #df_elements<-minerals_ima_list_ima(1)$type_localities #df_out <- data.frame() #for (elements in df_elements) { # elm_id_list <- as.list(elements) # for (elm in elm_id_list){ # df_cur_locality <- localities_retrieve_id(elm) # df_out <- rbind(df_out,df_cur_locality) # } #} #df_out$longitude <- as.numeric(df_out$longitude) #df_out$latitude <- as.numeric(df_out$latitude) #mapview(df_out2, xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE) ``` ## More Examples Please refer to: https://github.com/quexiang/OpenMindat