--- title: "NetworkInference: Quick Start Guide" author: "Fridolin Linder" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{NetworkInference: Quick Start Guide} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- --- # Introduction --- This package provides an R implementation of the netinf algorithm created by @gomez2010inferring (see [here](http://snap.stanford.edu/netinf/) for more information and the original C++ implementation). Given a set of events that spread between a set of nodes the algorithm infers the most likely stable diffusion network that is underlying the diffusion process. --- # Installation --- The package can be installed from [CRAN](https://CRAN.R-project.org/): ```{r, eval=FALSE} install.packages("NetworkInference") ``` The latest development version can be installed from [github](https://github.com/desmarais-lab/NetworkInference): ```{r, eval=FALSE} #install.packages(devtools) devtools::install_github('desmarais-lab/NetworkInference') ``` --- # Quick start guide --- To get started, get your data into the `cascades` format required by the `netinf` function: ```{r, results='hide', message=FALSE} library(NetworkInference) # Simulate random cascade data df <- simulate_rnd_cascades(50, n_node = 20) # Cast data into `cascades` object ## From long format cascades <- as_cascade_long(df) ## From wide format df_matrix <- as.matrix(cascades) ### Create example matrix cascades <- as_cascade_wide(df_matrix) ``` Then fit the model: ```{r} result <- netinf(cascades, quiet = TRUE, p_value_cutoff = 0.05) ``` ```{r, eval=FALSE} head(result) ``` ```{r, results="asis", echo=FALSE} pander::pandoc.table(head(result)) ```