## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(MSRDT) ## ----------------------------------------------------------------------------- ###Generate the prior distribution of failure probability ##Beta is conjugate prior to binomial distribution #Get the non-informative prior Beta(1, 1) pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1) #Get the consumer's risk n = 10 R = 0.8 c = 2 b_CR <- bconsumerrisk(n = n, c = c, pi = pi, R = R) print(b_CR) ##As n increases, CR decreases #Get the optimal test sample size thres_CR = 0.05 #CR < 0.05 b_n <- boptimal_n(c = c, pi = pi, R = R, thres_CR = thres_CR) print(b_n) ## ----------------------------------------------------------------------------- ###Generate the prior distribution of failure probability ##Dirichlet is conjugate prior to multinomial distribution #Get the non-informative prior Dirichlet(1, 1, 1) pi <- pi_MCSim_dirichlet(M = 5000, seed = 10, par = c(1, 1, 1)) #Get the consumer's risk n = 10 cvec = c(1, 1) Rvec = c(0.8, 0.7) MPCum_CR <- MPCum_consumerrisk(n = n, cvec = cvec, pivec = pi, Rvec = Rvec) print(MPCum_CR) ##As n increases, CR decreases #Get the optimal test sample size thres_CR = 0.05 #CR <= 0.05 MPCum_n <- MPCum_optimal_n(cvec = cvec, pivec = pi, Rvec = Rvec, thres_CR = thres_CR) print(MPCum_n)