## ---- echo = FALSE------------------------------------------------------------ knitr::opts_chunk$set( fig.width = 7, fig.height = 4.5, fig.align = "center", # cache = TRUE, autodep = TRUE ) ## ----------------------------------------------------------------------------- library(Synth) data(basque) colnames(basque) basque[703,] ## ----------------------------------------------------------------------------- library(MSCMT) Basque <- listFromLong(basque, unit.variable="regionno", time.variable="year", unit.names.variable="regionname") names(Basque) head(Basque$gdpcap) ## ----------------------------------------------------------------------------- # define the sum of all cases school.sum <- with(Basque,colSums(school.illit + school.prim + school.med + school.high + school.post.high)) # combine school.high and school.post.high in a single class Basque$school.higher <- Basque$school.high + Basque$school.post.high # calculate ratios and multiply by number of observations to obtain percentages from totals for (item in c("school.illit", "school.prim", "school.med", "school.higher")) Basque[[item]] <- 6 * 100 * t(t(Basque[[item]]) / school.sum) ## ----------------------------------------------------------------------------- treatment.identifier <- "Basque Country (Pais Vasco)" controls.identifier <- setdiff(colnames(Basque[[1]]), c(treatment.identifier, "Spain (Espana)")) times.dep <- cbind("gdpcap" = c(1960,1969)) times.pred <- cbind("school.illit" = c(1964,1969), "school.prim" = c(1964,1969), "school.med" = c(1964,1969), "school.higher" = c(1964,1969), "invest" = c(1964,1969), "gdpcap" = c(1960,1969), "sec.agriculture" = c(1961,1969), "sec.energy" = c(1961,1969), "sec.industry" = c(1961,1969), "sec.construction" = c(1961,1969), "sec.services.venta" = c(1961,1969), "sec.services.nonventa" = c(1961,1969), "popdens" = c(1969,1969)) agg.fns <- rep("mean", ncol(times.pred)) ## ----------------------------------------------------------------------------- res <- mscmt(Basque, treatment.identifier, controls.identifier, times.dep, times.pred, agg.fns, seed=1) ## ----------------------------------------------------------------------------- res ## ----------------------------------------------------------------------------- library(ggplot2) ggplot(res, type="comparison") ## ----------------------------------------------------------------------------- ggplot(res, type="gaps") ## ----------------------------------------------------------------------------- ggplot(res, what=c("gdpcap","invest","school.higher","sec.energy"), type="comparison") ## ----------------------------------------------------------------------------- library(parallel) cl <- makeCluster(2) resplacebo <- mscmt(Basque, treatment.identifier, controls.identifier, times.dep, times.pred, agg.fns, cl=cl, placebo=TRUE, seed=1) stopCluster(cl) ## ----------------------------------------------------------------------------- ggplot(resplacebo[["Cataluna"]], type="comparison") ## ----------------------------------------------------------------------------- ggplot(resplacebo) ## ----------------------------------------------------------------------------- ggplot(resplacebo, exclude.ratio=5, ratio.type="mspe") ## ----------------------------------------------------------------------------- pvalue(resplacebo, exclude.ratio=5, ratio.type="mspe", alternative="less") ggplot(resplacebo, exclude.ratio=5, ratio.type="mspe", type="p.value", alternative="less") ## ----------------------------------------------------------------------------- did(resplacebo, range.post=c(1970,1990), exclude.ratio=5, alternative="less")