--- title: "MCMCtreeR" author: - Mark Puttick - marknputtick@gmail.com - University of Bath date: "`r format(Sys.time(), '%d %B %Y')`" header-includes: \usepackage{float} vignette: > %\VignetteIndexEntry{MCMCtreeR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, echo=FALSE, warning=FALSE, message=FALSE} library(knitr) opts_chunk$set(tidy.opts=list(width.cutoff=60),tidy=TRUE) ``` ```{r global_options, include=FALSE} knitr::opts_chunk$set(fig.pos = 'H') ``` This is a guide for the R program [MCMCtreeR](https://github.com/PuttickMacroevolution). MCMCtreeR contains functions to set up analyses in the [MCMCtree](http://abacus.gene.ucl.ac.uk/software/paml.html) program. The functions here help users choose the best parameters to reflect age information for prior age distributions, visualise time priors, and produce output files ready to be used in **MCMCtree**. A seperate [vignette](https://github.com/PuttickMacroevolution/MCMCtreeR/blob/master/vignettes/MCMCtree_plot_pdf.pdf) is available to explain the plotting options for timescaled trees in MCMCtreeR. [MCMCtree](http://abacus.gene.ucl.ac.uk/software/paml.html) is a Bayesian program in the software PAML that estimates divergence times on fixed topologies using molecular data, developed by Ziheng Yang. The program requires various inputs from the user: a phylogeny, molecular sequence alignment, and selected model parameters. This guide does not include details about which time and other priors are most appropriate for the data, etc., so please see the [MCMCtree manual](https://github.com/PuttickMacroevolution/MCMCtreeR/blob/master/pamlDOC.pdf) for more information. # Installation ```{r} if(!any(rownames(installed.packages()) == "MCMCtreeR")) install.packages("MCMCtreeR") library(MCMCtreeR, quietly=TRUE, warn.conflicts=FALSE) ``` The examples here use a phylogeny of apes and associated age information. These data are a phylogeny of apes ``apeTree``, the minimum ages for internal nodes ``minimumTimes``, maximum ages for internal nodes ``maximumTimes``, and the tip labels descending from each node ``monophyleticGroups``. These example data can be substituted for other data. ```{r} data(apeData) attach(apeData) names(apeData) minimumTimes maximumTimes monophyleticGroups apeTree ``` The order of the data must match in the ``minimumTimes``, ``maximumTimes``, and ``monophyleticGroups`` objects. These data do not need to be given in the order they appear in the tree, but the order must match in each object. For example, if the minimum age for the root is the first element in ``minimumTimes`` it must also be the first element in the ``minimumTimes`` and ``monophyleticGroup`` objects. For this example there are four calibrated nodes. The MCMCtree function ``tipDes`` can be used to recreate the ``monophyleticGroups`` list object. First the ``ape`` package is used to plot the tree and view the node label numbers. ```{r, fig.align='center', fig.cap='**Figure 1** Plot of the tree with node labelled with numbers', fig.height=4, fig.width=4, dpi=200} plot(apeTree) nodelabels() tipDes(apeTree, 10) ``` The calibrated nodes in this example are 8, 10, 11, and 13. The function ``tipDes`` takes the tree and node numbers as input and returns the taxon names that descend from that node; this output can be used directly in the functions below. ```{r} monophyleticGroups.user <- tipDes(apeTree, c(8, 10, 11, 13)) monophyleticGroups.user ``` # Estimate parameters for node input parameters This section includes information to estimate and plot prior age distributions for node(s) used in MCMCtree divergence time estimation. The data required to do this are a phylogeny, minimum and maximum ages for the nodes with prior distributions, and taxa that descend from each node (please see above for information on how to make this various objects). The code can be used to simultaneously estimate the parameter values that reflect the *a priori* time information for nodes and write files ready for MCMCtree input. MCMCtreeR can produce output files with the same type of distributions used to summarise *a priori* time information for all nodes, or different distributions can be used to reflect uncertainty on different internal nodes. The functions here estimates the distribution parameters so that the distribution spans for user-supplied minimum bounds (lower age) and maximum bounds (upper age). By default, minimum ages are treated as 'hard' constraints and maximum ages are 'soft'. The function then ensures that 97.5% of the distribution falls between these minimum and maximum ages. The code can estimate paramaters for the Cauchy, Skew *t*, Skew-normal, and Gamma distirbutions shown in the [MCMCtree manual](https://github.com/PuttickMacroevolution/MCMCtreeR/blob/master/pamlDOC.pdf) on page 49, and calibrated node priors can also be placed on trees for uniform (bound), fixed, and upper age. For each function, if only a single value is provided for each parameter by the user, the function outputs warnings to indicate these values are recycled for each node. ## Skew *t* ### estimate scale with a given shape The default arguments in the ``estimateSkewT`` assumes the user wants to estimate the scale of the distribution with a given shape value (the default shape value is 50). The function estimates the parameters with the user-supplied minimum and maximum ages for all nodes, and the monophyletic groups that define the nodes.The output ``skewT_results$MCMCtree`` shows the estimated parameters in the input ready for MCMCtree. Here the parameters for the Skew *t* distributions are the location (lower node age), scale, shape, and degrees of freedom. ```{r} skewT_results <- estimateSkewT(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE) skewT_results$MCMCtree ``` As explained above, if only a single value is provided for each parameter by the user, the function outputs warnings to indicate these values are recycled for each node. The function ``plotMCMCtree`` plots the estimated age distributions given these parameters. ```{r, fig.align='center', fig.cap='**Figure 2** Skew *t* distributions for all nodes', fig.height=6, fig.width=6, dpi=200} par(mfrow=c(2,2), family="Palatino") for(i in 1:4) plotMCMCtree(skewT_results$parameters[i,], method="skewT", title=paste0("node ", i), upperTime=max(maximumTimes)) skewT_results$MCMCtree ``` If the distributions are acceptable, the output can be written into a tree file ready to be input into MCMCtree using the function ``estimateSkewT``. The functions will be written when the argument ``writeMCMCtree`` is set to ``TRUE``, and the file is set using the ``MCMCtreeName`` argument. Additionally, a PDF file is output showing the estimated distributions if ``plot=TRUE`` and the file name can be specifying using the argument ``pdfOutput``. ```{r} # result in tree MCMCtree format skewT_results$MCMCtree ## not run ## skewT_results <- estimateSkewT(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE, pdfOutput="skewTPlot.pdf", writeMCMCtree=TRUE, MCMCtreeName="skewTInput.tre") ``` It is not necessary to specify the same shape value for each parameter: a different value of the shape parameter can be set for each distribution. ```{r} ## not run (remove ## to run) ## skewT_results <- estimateSkewT(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, shape=c(9, 10, 8, 10), phy=apeTree, plot=TRUE, pdfOutput="skewTPlot.pdf", writeMCMCtree=TRUE, MCMCtreeName="skewTInput.tre") ## skewT_results$parameters ``` ### estimate shape with a given scale The function ``estimateSkewT`` will take input minimum input times, and estimate the value of the shape that will produce the desired distribution with the scale parameter set to 0.05. ```{r} skewT_results <- estimateSkewT(minAge=minimumTimes[2], maxAge=maximumTimes[2], monoGroups=monophyleticGroups, scale=0.05, estimateShape=TRUE, estimateScale=FALSE, phy=apeTree, plot=FALSE, writeMCMCtree=FALSE) skewT_results$parameters ``` ## Skew normal The ``estimateSkewNormal`` function estimates the value of the scale that will produce a skew normal distribution with the 97.5% cumulative probability of the distribution at the maximum age. ```{r} skewNormal_results <- estimateSkewNormal(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, addMode=0.05, phy=apeTree, plot=FALSE) skewNormal_results$parameters ``` These skew normal distributions can also be plotted to the screen. ```{r, fig.align='center', fig.cap='**Figure 3** Skew normal distributions for all nodes', fig.height=6, fig.width=6, dpi=200} par(mfrow=c(2,2), family="Palatino") for(i in 1:4) plotMCMCtree(skewNormal_results$parameters[i,], method="skewNormal", title=paste0("node ", i), upperTime=max(maximumTimes)) ``` ## Cauchy Here the ``estimateCauchy`` function is used to estimate parameters and plot the example on page 49 of PAML manual. ```{r, fig.align='center', fig.cap='**Figure 4** Cauchy distributions for all nodes (with a given scale)', fig.height=6, fig.width=6, dpi=200} example_page_50 <- estimateCauchy(minAge=1, maxAge=4.32, monoGroups=monophyleticGroups[[1]], phy=apeTree, offset=0.5, minProb=0.025, plot=FALSE)[[1]] plotMCMCtree(example_page_50, method="cauchy", title=paste0("node ", i), upperTime=max(maximumTimes)) ``` ### estimate scale with a given shape The ``estimateCauchy`` function will take minimum input times, and estimate the value of the scale parameter that will produce a Cauchy distribution with the 97.5% cumulative probability of the distribution at the user-supplied maximum age. ```{r, fig.align='center', fig.cap='**Figure 5** Cauchy distributions for all nodes (with a given shape)', fig.height=6, fig.width=6, dpi=200} cauchy_results <- estimateCauchy(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, offset=0.5, phy=apeTree, plot=FALSE) cauchy_results$parameters par(mfrow=c(2,2), family="Times") for(i in 1:4) plotMCMCtree(cauchy_results$parameters[i,], method="cauchy", title=paste0("node ", i), upperTime=max(maximumTimes)) ``` These plots indicate we may have constrained our distribution too much for the 2nd, 3rd, and 4th distribution so we can modify that to allow for a smaller offset. ```{r, fig.align='center', fig.cap='**Figure 6** Cauchy distributions for all nodes (with a given shape) and smaller offset', fig.height=6, fig.width=6, dpi=200} cauchy_results <- estimateCauchy(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, offset=c(0.5, 0.1, 0.1, 0.05), phy=apeTree, plot=FALSE) cauchy_results$parameters par(mfrow=c(2,2), family="Times") for(i in 1:4) plotMCMCtree(cauchy_results$parameters[i,], method="cauchy", title=paste0("node ", i), upperTime=maximumTimes[i]) ``` ## Uniform distribution ```{r, fig.align='center', fig.cap='**Figure 7** Uniform distributions for all nodes', fig.height=6, fig.width=6, dpi=200} uniform_results <- estimateBound(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, phy=apeTree, plot=FALSE) uniform_results$parameters par(mfrow=c(2,2), family="Palatino") for(i in 1:4) plotMCMCtree(uniform_results$parameters[i,], method="bound", title=paste0("node ", i), upperTime=maximumTimes[i]+1) ``` ## Gamma distribution ```{r, fig.align='center', fig.cap='**Figure 8** Gamma distributions for all nodes', fig.height=6, fig.width=6, dpi=200} gamma_results <- estimateGamma(minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, alpha=188, beta=2690, offset=0.1, phy=apeTree, plot=FALSE) gamma_results$parameters par(mfrow=c(2,2), family="Palatino") for(i in 1:4) plotMCMCtree(gamma_results$parameters[i,], method="gamma", title=paste0("node ", i), upperTime=maximumTimes[i]) ``` ## Upper Age ```{r} upper_results <- estimateUpper(maxAge=maximumTimes, monoGroups=monophyleticGroups, rightTail=0.025, phy=apeTree) upper_results$parameters ``` ## Fixed ages ```{r} fixed_results <- estimateFixed(minAge=minimumTimes[1], monoGroups=monophyleticGroups[[1]], phy=apeTree) fixed_results ``` ## Different parameters on different nodes It is possible to specify different node calibration distributions to each calibrated node. we can specify this by using the ``MCMCtreePhy`` function. Here there are different distributions applied to the internal nodes: a fixed root (node 1), skew normal (node 2), gamma (node 3), and upper distribution (node 4). For each input we give the associated parameter values in a vector in the order of nodes. i.e., for the ``minProb`` on four nodes can be set as 1, 2, 4 to be 1e-8 and node 3 to be 0.025 ```{r} each.node.method <- c("skewT", "cauchy", "gamma", "upper") output.full <- MCMCtreePhy(phy=apeTree, minAge=minimumTimes, maxAge=maximumTimes, monoGroups=monophyleticGroups, method=each.node.method, writeMCMCtree = FALSE) ``` This can fine-tuned. For example, to estimate alpha not beta for the 3rd node ```{r} estimate.alpha <- c(FALSE, FALSE, TRUE, FALSE) estimate.beta <- c(TRUE, TRUE, FALSE, TRUE) outputFull <- MCMCtreePhy(phy=apeTree, minAges=minimumTimes, maxAges=maximumTimes, monoGroups=monophyleticGroups, method=each.node.method, estimateAlpha=estimate.alpha, estimateBeta=estimate.beta, alpha=188, beta=100, writeMCMCtree = FALSE) ``` Outputs from individual methods can be added to the input for subsequent node estimation. This allows for easier fine-tuning. Perhaps easier to explain with an example. Here, a skew normal calibration is applied to the first node. ```{r} skewNormal_results_nodeOne <- estimateSkewNormal(minAge=minimumTimes[1], maxAge=maximumTimes[1], monoGroups=monophyleticGroups[[1]], addMode=0.05, phy=apeTree, plot=FALSE, writeMCMCtree = FALSE) skewNormal_results_nodeOne$apePhy ``` This output is then used as input in ``estimateCauchy`` to estimate parameters for a Cauchy distribution, which is applied to the second node. ```{r} cauchy_results_nodeTwo <- estimateCauchy(minAge=minimumTimes[2], maxAge=maximumTimes[2], monoGroups=monophyleticGroups[[2]], offset=0.5, phy=skewNormal_results_nodeOne$apePhy, plot=FALSE, writeMCMCtree = FALSE) cauchy_results_nodeTwo$apePhy ``` The third node is the set as a uniform distribution. ```{r} uniform_results_nodeThree <- estimateBound(minAge=minimumTimes[3], maxAge=maximumTimes[3], monoGroups=monophyleticGroups[[3]], phy=cauchy_results_nodeTwo$apePhy, plot=FALSE, writeMCMCtree = FALSE) uniform_results_nodeThree$apePhy ``` The fourth is a skewT distribution, and the tree can be written to file for input into MCMCtree. ```{r} ## not run # skewT_results_nodeFour <- estimateSkewT(minAge=minimumTimes[4], maxAge=maximumTimes[4], monoGroups=monophyleticGroups[[4]], scale=0.5, phy=cauchy_results_nodeTwo$apePhy, plot=FALSE, writeMCMCtree = TRUE) # skewT_results_nodeFour$apePhy ```