## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----dummy_data--------------------------------------------------------------- #load in IgAScores library(IgAScores) #dataframes with counts for the bacterial taxa in the IgA+ and IgA- fractions and presort sample, as would be produced by 16S rRNA appraoches such as DADA2 igapos <- data.frame(Sample1=c(100,0,1,2,10),Sample2=c(110,0,11,42,50),Sample3=c(140,60,10,3,0)) iganeg <- data.frame(Sample1=c(200,0,40,20,4),Sample2=c(10,30,110,2,5),Sample3=c(30,20,0,123,20)) presort <- data.frame(Sample1=c(150,10,50,30,5),Sample2=c(100,30,115,20,10),Sample3=c(30,20,10,100,25)) taxnames <- c("Taxon1","Taxon2","Taxon3","Taxon4","Taxon5") rownames(igapos) <- taxnames rownames(iganeg) <- taxnames rownames(presort) <- taxnames #convert the counts to relative abundances using the included helper function igapos <- relabund(igapos) iganeg <- relabund(iganeg) presort <- relabund(presort) #iga+ and iga- fraction sizes per sample (fraction, if a percentage divide by 100) possize <- c(Sample1=0.04,Sample2=0.05,Sample3=0.03) negsize <- c(Sample1=0.54,Sample2=0.47,Sample3=0.33) #set a pseudo count for handling zero values in some scoring methods #this should be of a similar value of the minimum non-zero observed value (e.g. if minum values is 0.007 use 0.001) pseudo <- 0.001 ## ----reqs, echo=F------------------------------------------------------------- pr <- c("Probability Ratio","probratio","IgA+ abundance, IgA- abundance, IgA+ size, IgA- size, pseudo") pp <- c("IgA+ Probability","prob","IgA+ abundance, Presort abundance, IgA+ size") pa <- c("Palm index","palm","IgA+ abundance, IgA- abundance, pseudo") ka <- c("Kau index","kau","IgA+ abundance, IgA- abundance, pseudo") comb <- rbind(pr,pp,pa,ka) colnames(comb) <- c("Score","Method name","Inputs required") knitr::kable(comb, row.names = F) ## ----probrat------------------------------------------------------------------ #default method is probratio prscores <- igascores(posabunds = igapos, negabunds = iganeg, possizes = possize, negsizes = negsize, pseudo = pseudo) print(prscores) ## ----pp----------------------------------------------------------------------- ppscores <- igascores(posabunds = igapos, possizes = possize, presortabunds = presort, method="prob") print(ppscores) ## ----kp----------------------------------------------------------------------- kscores <- igascores(posabunds = igapos, negabunds = iganeg, pseudo=pseudo, method="kau") print(kscores) pscores <- igascores(posabunds = igapos, negabunds = iganeg, pseudo=pseudo, method="palm") print(pscores) ## ----singlefuns--------------------------------------------------------------- igaprobabilityratio(posabund = igapos[1,1], negabund = iganeg[1,1], possize = possize[1], negsize = negsize[1], pseudo = pseudo) igaprobability(withinabund = igapos[1,1], presortabund = presort[1,1], gatesize = possize[1]) kauindex(posabund = igapos[1,1], negabund = iganeg[1,1], pseudo = pseudo) palmindex(posabund = igapos[1,1], negabund = iganeg[1,1], pseudo = pseudo) ## ----sim---------------------------------------------------------------------- #run the simulation with defaults simdata <- simulateigaseq() summary(simdata)