---
title: "ICESat-2 Virtual File System Orbits"
output: rmarkdown::pdf_document
always_allow_html: true
vignette: >
%\VignetteIndexEntry{ICESat-2 Virtual File System Orbits}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
urlcolor: blue
---
```{r, include = FALSE}
knitr::opts_chunk$set(fig.width = 4,
fig.height = 6,
fig.align = "center",
fig.pos = "!H",
warning = FALSE,
message = FALSE,
echo = TRUE,
eval = TRUE)
```
In this *third* vignette I'll make use of the [GDAL Virtual File Systems](https://gdal.org/user/virtual_file_systems.html) to download *nominal* and *time specific* orbit data (from the [ICESat-2 Technical Specs website](https://icesat-2.gsfc.nasa.gov/science/specs)) for an Area of Interest (AOI). This will allow me to reduce the download and computation time once I make the requests to the [OpenAltimetry API](https://openaltimetry.org/data/swagger-ui/).
The area of interest is the **Himalayas mountain range** which has some of the *highest peaks* in the world, including *mount Everest*. The following map shows the bounding box area that I'll use in this vignette,
```{r himalayas-aoi, fig.pos='h', out.width = "105%", out.height = "100%", fig.align = 'center', fig.cap = "Area of Interest", fig.alt="Display the area of interest in Himalayas", echo = F}
knitr::include_graphics("himalayas_aoi.png")
# mp1 = mapview::mapview(geoms_himal[2, ], legend = F) # see next code snippet for the "geoms_himal" variable
# mp2 = mapview::mapview(geoms_himal[2, ], legend = F)
#
#
# leafsync::sync(mp1, mp2, ncol = 2)
```
First, we load the data,
```r
pkgs = c('IceSat2R', 'magrittr', 'sf', 'mapview', 'leaflet')
load_pkgs = lapply(pkgs, require, character.only = TRUE) # load required R packages
geoms_himal_pth = system.file('data_files', 'vignette_data', 'himalayas.RDS', package = "IceSat2R")
geoms_himal = readRDS(geoms_himal_pth)
geoms_himal
# Simple feature collection with 2 features and 1 field
# Geometry type: POLYGON
# Dimension: XY
# Bounding box: xmin: 86.35254 ymin: 26.95635 xmax: 87.29736 ymax: 28.25842
# CRS: EPSG:4326
# area_size geometry
# 1 small POLYGON ((86.36902 27.66164...
# 2 big POLYGON ((86.35254 26.95635...
```
Since the *Himalayas mountain range* is located in the *Eastern Hemisphere* we'll pick this as an area when calling the *IceSat2R::vsi_nominal_orbits_wkt()* function. Moreover, we'll iterate over all *8 available repeats* for the *Eastern Hemisphere* to retrieve the *Reference Ground Tracks (RGTs)* of the AOI based on the *nominal orbits*,
```r
sf_wkt = sf::st_geometry(subset(geoms_himal, area_size == 'big'))
centr_wkt = sf::st_coordinates(sf::st_centroid(sf_wkt))
dat_wkt = sf::st_as_text(sf_wkt)
lst_out = list()
for (iter in 1:8) { # iterate over all available repeats
cat(paste0(iter, '.'))
dat_iter = IceSat2R::vsi_nominal_orbits_wkt(orbit_area = 'eastern_hemisphere',
track = 'GT7',
rgt_repeat = iter,
wkt_filter = dat_wkt,
download_method = 'curl',
download_zip = FALSE,
verbose = TRUE)
lst_out[[iter]] = dat_iter
}
# 1.The available Icesat-2 orbits will be red from 'https://icesat-2.gsfc.nasa.gov/ ...
# Access the data of the technical specs website ...
# Extract the .zip files and the corresponding titles ...
# Keep the relevant data from the url's and titles ...
# Process the nominal and time specific orbits separately ...
# Adjust the Dates of the time specific orbits ...
# Create the nominal orbits data.table ...
# Create the time specific orbits data.table ...
# Return a single data.table ...
# .............
# 8.The available Icesat-2 orbits will be red from 'https://icesat-2.gsfc.nasa.gov/ ...
# Access the data of the technical specs website ...
# .............
# Elapsed time: 0 hours and 0 minutes and 2 seconds.
# Data based on repeat and track will be kept ...
# Data based on repeat and track will be kept ...
# The file 'EasternHem_repeat8_GT7.kmz' will be processed ...
# Total Elapsed time: 0 hours and 0 minutes and 5 seconds.
```
```r
lst_out = unlist(lst_out, recursive = F)
unq_rgts = as.vector(unique(unlist(lapply(lst_out, function(x) x$RGT))))
unq_rgts
# [1] "96" "157" "363" "538" "599" "805" "866" "1041" "1308" "1247"
```
```{r reference-plt-1, echo = F}
# #......................................................... mapview visualization
#
# # make the sf-objects valid
# nams = names(lst_out)
# lst_out = lapply(lst_out, function(x) sf::st_make_valid(x))
# names(lst_out) <- nams
#
# sf_wkt = sf::st_make_valid(sf_wkt)
#
# # Plot the two sf-objects
# RGTs = mapview::mapview(lst_out, legend = F)
# AOI_wkt = mapview::mapview(sf_wkt, legend = F)
#
# lft = RGTs + AOI_wkt
#
# require(magrittr)
#
# lft = lft@map %>% leaflet::setView(lng = as.numeric(centr_wkt[, 'X']),
# lat = as.numeric(centr_wkt[, 'Y']),
# zoom = 7)
# lft
# #.......................................................
```
For this specific use case we are interested in ICESat-2 data for a specific time period,
* from *'2020-01-01'* to *'2021-01-01'* (1-year's data)
Therefore, we'll make use of the *IceSat2R::vsi_time_specific_orbits_wkt()* function which queries all *15 ICESat-2 RGTs cycles* (as of March 2022) to come to the RGTs intersection for the specified 1-year time interval,
```r
date_start = '2020-01-01'
date_end = '2021-01-01'
orb_cyc_multi = IceSat2R::vsi_time_specific_orbits_wkt(date_from = date_start,
date_to = date_end,
RGTs = unq_rgts,
wkt_filter = dat_wkt,
verbose = TRUE)
# The available Icesat-2 orbits will be red from 'https://icesat-2.gsfc.nasa.gov/ ...
# Access the data of the technical specs website ...
# Extract the .zip files and the corresponding titles ...
# Keep the relevant data from the url's and titles ...
# Process the nominal and time specific orbits separately ...
# Adjust the Dates of the time specific orbits ...
# Create the nominal orbits data.table ...
# Create the time specific orbits data.table ...
# Return a single data.table ...
# Elapsed time: 0 hours and 0 minutes and 0 seconds.
# In total there are 5 intersected dates for which data will be processed!
# The RGT cycles from which data will be processed are:
# RGT_cycle_6, RGT_cycle_7, RGT_cycle_8, RGT_cycle_9, RGT_cycle_10
# -------------------------------------------------
# RGTs of cycle 'RGT_cycle_6' will be processed ...
# -------------------------------------------------
# The 'sf' gdalinfo returned an empty character string! Attempt to read the url using
# the OS configured 'gdalinfo' function ...
# The internal type of the .zip file is 'kml'
# The 'https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/IS2_RGTs_cycle6_...'
# 'zip' file includes 1387 'kml' files.
# Elapsed time: 0 hours and 0 minutes and 8 seconds.
# 6 out of 10 sublists were empty and will be removed!
# -------------------------------------------------
# RGTs of cycle 'RGT_cycle_7' will be processed ...
# -------------------------------------------------
#
# .................
#
# -------------------------------------------------
# RGTs of cycle 'RGT_cycle_10' will be processed ...
# -------------------------------------------------
# The 'sf' gdalinfo returned an empty character string! Attempt to read the url using th ...
# 'gdalinfo' function ...
# The internal type of the .zip file is 'kml'
# The 'https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/IS2_RGTs_cycle10_date ...
# 'zip' file includes 1387 'kml' files.
# Elapsed time: 0 hours and 0 minutes and 6 seconds.
# 6 out of 10 sublists were empty and will be removed!
# In total 5 RGT cycles will be included in the output 'sf' object (RGT_cycle_6, RGT_cycle_7,
# RGT_cycle_8, RGT_cycle_9, RGT_cycle_10)!
# output of 'RGT_cycle_6' will be re-formatted ...
# The 'description' column of the output data will be processed ...
# output of 'RGT_cycle_7' will be re-formatted ...
# The 'description' column of the output data will be processed ...
# output of 'RGT_cycle_8' will be re-formatted ...
# The 'description' column of the output data will be processed ...
# output of 'RGT_cycle_9' will be re-formatted ...
# The 'description' column of the output data will be processed ...
# output of 'RGT_cycle_10' will be re-formatted ...
# The 'description' column of the output data will be processed ...
# Total Elapsed time: 0 hours and 2 minutes and 37 seconds.
```
The query returns 18 different Date-Time matches for our defined 1-year time period,
```r
orb_cyc_multi
# Simple feature collection with 18 features and 14 fields
# Geometry type: POINT
# Dimension: XY
# Bounding box: xmin: 86.45225 ymin: 27.09347 xmax: 87.22874 ymax: 27.11331
# CRS: EPSG:4326
# First 10 features:
# .... drawOrder icon RGT Date_time day_of_year cycle geometry
# 1 .... NA 96 2020-01-02 00:37:11 2 6 POINT (86.97015 27.10272)
# 2 .... NA 538 2020-01-30 23:13:14 30 6 POINT (87.22874 27.09347)
# 3 .... NA 599 2020-02-03 23:04:54 34 6 POINT (86.45225 27.11331)
# 4 .... NA 1041 2020-03-03 21:40:57 63 6 POINT (86.71086 27.1045)
# 5 .... NA 96 2020-04-01 20:17:02 92 7 POINT (87.09815 27.08729)
# 6 .... NA 599 2020-05-04 18:44:45 125 7 POINT (86.58026 27.09789)
# 7 .... NA 1041 2020-06-02 17:20:48 154 7 POINT (86.83886 27.08907)
# 8 .... NA 96 2020-07-01 15:56:55 183 8 POINT (87.00215 27.09888)
# 9 .... NA 538 2020-07-30 14:32:58 212 8 POINT (87.26075 27.08963)
# 10 .... NA 599 2020-08-03 14:24:38 216 8 POINT (86.48426 27.10947)
```
We'll use the *mapview* R package to visualize our AOI bounding box with the intersected time-specific RGTs,
```r
# make the sf-objects valid
orb_cyc_multi = sf::st_make_valid(orb_cyc_multi)
sf_wkt = sf::st_make_valid(sf_wkt)
# plot the sf-objects
orbit_cy = mapview::mapview(orb_cyc_multi, legend = F)
AOI_wkt = mapview::mapview(sf_wkt, legend = F)
lft = orbit_cy + AOI_wkt
lft = lft@map %>% leaflet::setView(lng = as.numeric(centr_wkt[, 'X']),
lat = as.numeric(centr_wkt[, 'Y']),
zoom = 7)
lft
```
```{r himalayas-rgts, fig.pos='h', out.width = "80%", out.height = "80%", fig.align = 'center', fig.cap = "Intersected RGTs", fig.alt="Intersected Reference Ground Tracks", echo = F}
knitr::include_graphics("himalayas_rgts.png")
```
\newpage
The output of *'vsi_time_specific_orbits_wkt()'* can be verified with the *OpenAltimetry's 'getTracks()'* function,
```r
bbx_aoi = sf::st_bbox(obj = sf_wkt)
dtbl_rgts = verify_RGTs(nsidc_rgts = orb_cyc_multi,
bbx_aoi = bbx_aoi,
verbose = TRUE)
dtbl_rgts
# Date_time RGT_OpenAlt RGT_NSIDC
# 1: 2020-01-02 96 96
# 2: 2020-01-30 538 538
# 3: 2020-02-03 599 599
# 4: 2020-03-03 1041 1041
# 5: 2020-04-01 96 96
# 6: 2020-05-04 599 599
# 7: 2020-06-02 1041 1041
# 8: 2020-07-01 96 96
# 9: 2020-07-30 538 538
# 10: 2020-08-03 599 599
# 11: 2020-09-01 1041 1041
# 12: 2020-09-30 96 96
# 13: 2020-11-02 599 599
# 14: 2020-12-01 1041 1041
# 15: 2020-12-30 96 96
# 16: 2021-01-28 538 538
# 17: 2021-02-01 599 599
# 18: 2021-03-02 1041 1041
```