## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # data(example.data) # K <- 6 # lambda <- genelambda.obo(nlambda1=5,lambda1_max=0.5,lambda1_min=0.1, # nlambda2=15,lambda2_max=1.5,lambda2_min=0.1, # nlambda3=10,lambda3_max=3.5,lambda3_min=0.5) ## ----eval=FALSE--------------------------------------------------------------- # res <- GGMPF(lambda, example.data$data, K, penalty = "MCP") # Theta_hat.list <- res$Theta_hat.list # Mu_hat.list <- res$Mu_hat.list # opt_num <- res$Opt_num # opt_Mu_hat <- Mu_hat.list[[opt_num]] # opt_Theta_hat <- Theta_hat.list[[opt_num]] # K_hat <- dim(opt_Theta_hat)[3] # K_hat # Output the estimated K0. ## ----eval=FALSE--------------------------------------------------------------- # summ <- summary_network(opt_Mu_hat, opt_Theta_hat, example.data$data) # summ$Theta_summary$overlap # va_names <- c("6") # linked_node_names(summ, va_names, num_subgroup=1) # plot_network(summ, num_subgroup = c(1:K_hat), plot.mfrow=c(1,K_hat)) ## ----eval=FALSE--------------------------------------------------------------- # data(example.data) # K <- 3 # lambda <- genelambda.obo(nlambda1=5,lambda1_max=0.5,lambda1_min=0.1, # nlambda2=15,lambda2_max=1.5,lambda2_min=0.1) ## ----eval=FALSE--------------------------------------------------------------- # res <- PGGMBC(lambda, example.data$data, K, initial.selection="K-means") # Theta_hat.list <- res$Theta_hat.list # opt_num <- res$Opt_num # opt_Theta_hat <- Theta_hat.list[[opt_num]]