## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 5, fig.width = 7 ) ## ----setup-------------------------------------------------------------------- library(FunnelPlotR) ## ----dtsetup------------------------------------------------------------------ library(COUNT) data(medpar) medpar$provnum<-factor(medpar$provnum) medpar$los<-as.numeric(medpar$los) # Logistic model to predict LOS, LOS is quite overdispersed mod<- glm(los ~ hmo + died + age80 + factor(type), family="poisson", data=medpar) #Get predicted value for ratio medpar$prds<- predict(mod, newdata = medpar, type="response") # Draw plot, returning just the plot object funnel_plot(medpar, denominator=prds, numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE) ## ----highlight---------------------------------------------------------------- # Draw plot, returning just the plot object funnel_plot(medpar, denominator=prds, numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, highlight="030002") ## ----plottheme1--------------------------------------------------------------- funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, theme = funnel_grey() ) ## ----plottheme2--------------------------------------------------------------- library(ggplot2) new_funnel_theme <- funnel_grey()+ theme(plot.title = element_text(face="bold", colour="red", size=6), # Change plot title legend.background = element_rect(fill="brown"), # Alter legend background colour axis.title.y = element_text(angle=0) #Rotate y axis label ) funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, theme = new_funnel_theme) ## ----colours------------------------------------------------------------------ funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, theme = funnel_grey(), plot_cols = c("#FF7F0EFF", "#000000", "#1F77B4FF","#1F77B4FF", "#9467BDFF", "#9467BDFF", "#2CA02CFF", "#2CA02CFF")) ## ----funnelscales------------------------------------------------------------- ## Changing labels funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, x_range=c(0, 400), y_range=c(0,2)) ## ----funnellabels1------------------------------------------------------------ funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 ,label = "outlier" , draw_unadjusted = TRUE, title = "Vignette funnel plot" , x_label = "x-axis", y_label = "y-axis") ## ----funnellabels2------------------------------------------------------------ funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99 , draw_unadjusted = TRUE, title = "Vignette funnel plot" , x_label = "x-axis", y_label = "y-axis" , highlight= "030002", label = "highlight") ## ----cutoutplot--------------------------------------------------------------- # Original funnel plot object fp <- funnel_plot(medpar, denominator=prds,numerator=los , group = provnum, limit=99, label = "outlier" , draw_unadjusted = TRUE) # Extract just the plot my_plot <- plot(fp) # Add an additional geom to plot my_plot + geom_vline(aes(xintercept=400), linetype = "dashed", colour="red", linewidth=2)