## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup-------------------------------------------------------------------- library(ExactCIone) ## ----------------------------------------------------------------------------- # Compute the 95% confidence interval when x=2, n=5. WbinoCI(x=2,n=5,conf.level=0.95) ## ----------------------------------------------------------------------------- WbinoCI(x=2,n=5,conf.level=0.95,details=TRUE) ## ----------------------------------------------------------------------------- WbinoCI_lower(x=2,n=5,conf.level=0.95) WbinoCI_lower(x=2,n=5,conf.level=0.95,details=TRUE) WbinoCI_upper(x=2,n=5,conf.level=0.95) WbinoCI_upper(x=2,n=5,conf.level=0.95,details=TRUE) ## ----------------------------------------------------------------------------- # The admissible CI for poisson mean when the observed sample is x=3. WpoisCI(x=3,conf.level = 0.95) #We show the intervals from 0 to the sample of interest when "details=TRUE". WpoisCI(x=3,conf.level = 0.95,details = TRUE) ## ----------------------------------------------------------------------------- WpoisCI_lower(x=3,conf.level = 0.95) WpoisCI_lower(x=3,conf.level = 0.95,details = TRUE) WpoisCI_upper(x=3,conf.level = 0.95) WpoisCI_upper(x=3,conf.level = 0.95,details = TRUE) ## ----------------------------------------------------------------------------- # For hyper(M,N,n), construct 95% CI for N on the observed sample x when n,M are known. WhyperCI_N(x=5,n=10,M=800,conf.level = 0.95) # It shows CIs for all the sample point When "details=TRUE". WhyperCI_N(x=5,n=10,M=800,conf.level = 0.95,details=TRUE) ## ----------------------------------------------------------------------------- WhyperCI_N_lower(x=0,n=10,M=800,conf.level = 0.95) WhyperCI_N_lower(x=0,n=10,M=800,conf.level = 0.95,details=TRUE) WhyperCI_N_upper(x=0,n=10,M=800,conf.level = 0.95) WhyperCI_N_upper(x=0,n=10,M=800,conf.level = 0.95,details=TRUE) ## ----------------------------------------------------------------------------- # For Hyper(M,N,n), construct the CI for M on the observed sample x when n, N are known. # Also output CI for p=M/N. WhyperCI_M(x=0,n=10,N=2000,conf.level = 0.95) WhyperCI_M(x=0,n=10,N=2000,conf.level = 0.95,details = TRUE) ## ----------------------------------------------------------------------------- WhyperCI_M_lower(X=0,n=10,N=2000,conf.level = 0.95) WhyperCI_M_lower(X=0,n=10,N=2000,conf.level = 0.95,details = TRUE) WhyperCI_M_upper(X=0,n=10,N=2000,conf.level = 0.95) WhyperCI_M_upper(X=0,n=10,N=2000,conf.level = 0.95,details = TRUE)