Analysis of follow-up data using the Lexis functions in Epi

SDCC June 2024 http://bendixcarstensen.com/ Version 9

Compiled Monday 30^{th} September, 2024, 21:41 from:

Bendix Carstensen Steno Diabetes Center Copenhagen, Herlev, Denmark & Department of Biostatistics, University of Copenhagen b@bxc.dk http://BendixCarstensen.com

In	Introduction 1												
	0.1 Teachnicalities												
	0.2	About	this vignette	1									
	0.3	Histor	y	2									
1	Rep	resent	ation of follow-up data in the Epi package	3									
	1.1	Time s	-	3									
	1.2	Splitti	ng the follow-up time along a time scale	6									
	1.3	r o r o											
2	Mod	deling	rates from Lexis objects	13									
	2.1	Covari	ates	13									
		2.1.1	Time scales as covariates	13									
		2.1.2	Differences between time scales	14									
		2.1.3	Keeping the relation between time scales	14									
	2.2	Model	ing of rates	15									
		2.2.1	Interval length	16									
		2.2.2	Practicalities for splines	16									
		2.2.3	Poisson models	17									
	2.3	Time o	dependent covariate	20									
		2.3.1	Time since insulin start	21									
	2.4	The C	ox model	22									
	2.5		nal effect of time since insulin	24									
	2.6		luration interaction	26									
		2.6.1	Age at insulin start	27									
		2.6.2	General interaction	32									
		2.6.3	Evaluating interactions	32									
	2.7	Separa	te models	32									
3	Mor	e state	es	36									
	3.1	Subdiv	viding states	36									
	3.2		le intermediate events	36									
4	Lexi	Lexis functions 41											
References 44													

Introduction

0.1 Teachnicalities

First we set some graphics parameters and load the packages needed:

```
> options(width = 90,
          SweaveHooks=list(fig=function()
+
+
                            par(mar = c(3, 3, 1, 1),
+
                                mgp = c(3, 1, 0) / 1.6,
+
                                las = 1,
                               lend = "butt",
+
                                bty = "n")))
> library(Epi)
> library(popEpi)
> library(survival)
> clear()
> installed.packages()[c("Epi", "popEpi"),
                        c("Version", "Built"), drop = FALSE]
+
       Version Built
       "2.56" "4.4.1"
Epi
popEpi "0.4.12" "4.4.1"
```

0.2 About this vignette

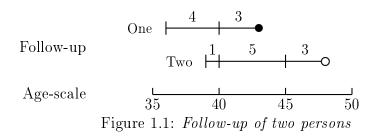
This vignette is an introduction to the Lexis machinery in the Epi package, intended for representation and manipulation of follow-up data ("event history data") from studies where exact dates of events are known. It accommodates follow-up through multiple states and on multiple time scales.

This vignette uses an example from the Epi package to illustrate the set-up of a simple Lexis object (a data frame of follow-up intervals), as well as the subdivision of follow-up intervals needed for multistate representation and analysis of transition rates by flexible parametric functions.

The first chapter is exclusively on manipulation of the follow-up representation, but it points to the subsequent chapter where analysis is based on a Lexis representation with very small follow-up intervals.

Chapter 2 uses analysis of mortality rates among Danish diabetes patients (available in the Epi package) currently on insulin treatment or not, to illustrate the use of Lexis object in the analysis of rates.

0.3 History


The Lexis machinery in the Epi package was first conceived by Martyn Plummer[3, 1], and since its first appearance in the Epi package in 2008 it has been expanded with a number of utilities. An overview of these can be found in the last chapter of this note, "Lexis functions".

Chapter 1

Representation of follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables and a few attributes to a data frame. Such a data frame is called a Lexis object. The tools for handling follow-up data then use the structure of this for special plots, tabulations and modeling.

Follow-up data basically consists of a time of entry, a time of exit and an indication of the status at exit (normally either "alive" or "dead") for each person. Implicitly is also assumed a status *during* the follow-up (usually "alive").

1.1 Time scales

A time scale is a variable that varies deterministically within each person during follow-up, e.g.:

- Age
- Calendar time
- Time since start of treatment
- Time since relapse

All time scales advance at the same pace, so the time followed is the same on all time scales. Therefore, it will suffice to use only the entry point on each of the time scales, for example:

• Age at entry

- Date of entry
- Time at treatment (at treatment this is 0)
- Time at relapse (at relapse this is 0)

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object is a data frame with some extra structure to representing the follow-up. For the DMlate data — follow-up of diabetes patients in Denmark with recorded date of birth, date of diabetes, date of insulin use, date of first oral drug use, date of exit and date of death — we can construct a Lexis object by first including follow-up from entry to exit:

```
> data(DMlate)
> head(DMlate)
                                  dodth
       sex
              dobth
                         dodm
                                           dooad doins
                                                             dox
         F 1940.256 1998.917
                                                     NA 2009.997
50185
                                    NA
                                              ΝA
307563
         M 1939.218 2003.309
                                     NA 2007.446
                                                     NA 2009.997
294104
         F 1918.301 2004.552
                                     NA
                                              ΝA
                                                     NA 2009.997
                                                     NA 2009.997
336439
         F 1965.225 2009.261
                                     NA
                                              ΝA
         M 1932.877 2008.653
                                                     NA 2009.997
245651
                                     ΝA
                                              ΝA
         F 1927.870 2007.886 2009.923
                                              NA
                                                     NA 2009.923
216824
> dmL <- Lexis(entry = list(per = dodm,</pre>
                             age = dodm-dobth,
+
+
                              tfD = 0),
                 exit = list(per = dox)
+
         exit.status = factor(!is.na(dodth),
+
+
                                labels = c("DM", "Dead")),
                 data = DMlate)
+
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol
> timeScales(dmL)
[1] "per" "age" "tfD"
```

(The excluded persons are persons with date of diabetes equal to date of death.)

The entry argument is a *named* list with the entry points on each of the time scales we want to use. It defines the names of the time scales and the entry points of the follow-up of each person. The exit argument gives the exit time on *one* of the time scales, so the name of the element in this list must match one of the names of the entry list. This is sufficient, because the follow-up time on all time scales is the same, in this case dox-dodm.

The exit.status is a categorical variable (a *factor*) that indicates the exit status — in this case whether the person (still) is in state DM or exits to Dead at the end of follow-up. In principle we should also indicate an entry.status, but the default is to assume that all persons enter in the *first* level of exit.states — in this case DM, because FALSE < TRUE.

Now take a look at the result:

```
> str(dmL)
Classes 'Lexis' and 'data.frame': 9996 obs. of 14 variables:
$ per : num 1999 2003 2005 2009 2009 ...
$ age : num 58.7 64.1 86.3 44 75.8 ...
$ tfD : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur: num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst: Factor w/ 2 levels "DM","Dead": 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "DM","Dead": 1 1 1 1 2 1 1 2 1 ...
```

```
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
         : Factor w/ 2 levels "M", "F": 2 1 2 2 1 2 1 1 2 1 ...
$ sex
$ dobth : num 1940 1939 1918 1965 1933 ...
        : num 1999 2003 2005 2009 2009 ...
$ dodm
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA ...
$ dox
         : num 2010 2010 2010 2010 2010 ...
 - attr(*, "time.scales")= chr [1:3] "per" "age" "tfD"
 - attr(*, "time.since")= chr [1:3] "" ""
 - attr(*, "breaks")=List of 3
  ..$ per: NULL
  ..$ age: NULL
  ..$ tfD: NULL
> head(dmL)[, 1:10]
lex.id
           per
                 age tfD lex.dur lex.Cst lex.Xst sex
                                                         dobth
                                                                   dodm
      1 1998.92 58.66
                      0
                            11.08
                                       DM
                                               DM
                                                  F 1940.256 1998.917
                                       DM
      2 2003.31 64.09
                       0
                             6.69
                                               DM
                                                  M 1939.218 2003.309
     3 2004.55 86.25
                       0
                             5.45
                                       DM
                                               DM
                                                    F 1918.301 2004.552
     4 2009.26 44.04
                       0
                             0.74
                                       DM
                                               DM
                                                    F 1965.225 2009.261
     5 2008.65 75.78
                             1.34
                       0
                                       DM
                                               DM
                                                    M 1932.877 2008.653
      6 2007.89 80.02
                       0
                             2.04
                                       DM
                                             Dead
                                                    F 1927.870 2007.886
```

The Lexis object dmL has a variable for each time scale, the value of which is the entry for each person on this time scale. The length of the follow-up time is in the variable lex.dur (duration). Note that the exit status is in the variable lex.Xst (eXit state). The variable lex.Cst is the state where the follow-up takes place (Current state), in this case DM (alive with diabetes) for all persons. This implies that observations *censored* in state Zst, say, are characterized by having lex.Cst = lex.Xst = Zst.

There is a summary function for Lexis objects that lists the number of transitions and records as well as the total amount of follow-up time; it also (optionally) prints information about the names of the variables that constitute the time scales:

```
> summary(dmL, timeScales = TRUE)
Transitions:
    To
From DM Dead Records: Events: Risk time: Persons:
    DM 7497 2499 9996 2499 54273.27 9996
Timescales:
per age tfD
"" "" ""
```

It is possible to get a visualization of the follow-up along the time scales chosen by using the plot method for Lexis objects. dmL is an object of *class* Lexis, so using the function plot() on it means that R will look for the function plot.Lexis and use this function.

> plot(dmL)

The function allows quite a bit of control over the output, and a points.Lexis function allows plotting of the endpoints of follow-up:

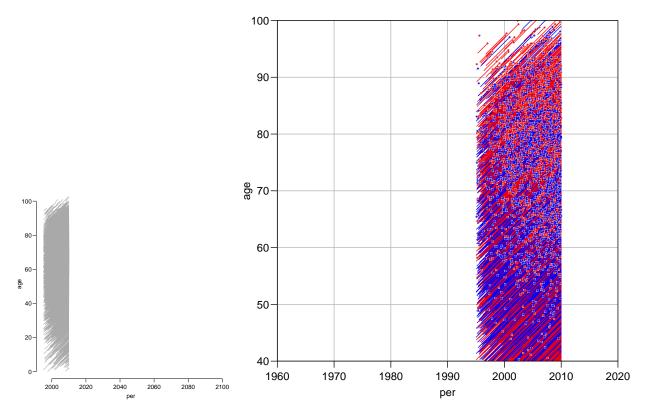


Figure 1.2: Lexis diagram of the DMlate dataset; left panel is the default version, right panel is with some bells and whistles. The red lines are for women, blue for men, crosses indicate deaths.

```
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0) / 1.6)
 plot(dmL, 1:2, lwd = 1, col = c("blue", "red")[dmL$sex],
       grid = TRUE, lty.grid = 1, col.grid = gray(0.7),
      xlim = 1960 + c(0, 60), xaxs = "i",
               40 + c(0, 60), yaxs = "i", las = 1)
      ylim =
>
 points(dmL, 1:2, pch = c(NA, 3)[dmL$lex.Xst],
         col = "lightgray", lwd = 3, cex = 0.3)
+
>
 points(dmL, 1:2, pch = c(NA, 3)[dmL$lex.Xst],
         col = c("blue", "red")[dmL$sex], lwd = 1, cex = 0.3)
+
>
 box(bty = 'o')
```

In the above code you will note that the values of the arguments col and pch are indexed by factors, using the convention in R that the index is taken as *number of the level* of the supplied factor. Thus c("blue", "red")[dmL\$sex] is "blue" when sex is M (the first level of sex) and. "red" when sex is F (the second level of sex).

The results of these two plotting commands are in figure 1.2, p. 6.

1.2 Splitting the follow-up time along a time scale

In next chapter we shall conduct statistical analysis of mortality rates, and a prerequisite for parametric analysis of rates is that follow-up time is subdivided in smaller intervals, where we can reasonably assume that rates are constant.

The follow-up time in a cohort can be subdivided ("split") along a time scale, for example

current age. This is achieved by the splitLexis (note that it is *not* called split.Lexis). This requires that the time scale and the breakpoints on this time scale are supplied. Try:

```
> dmS1 <- splitLexis(dmL, "age", breaks = seq(0, 100, 5))</pre>
> summary(dmL)
Transitions:
     Тο
       DM Dead
                 Records:
                            Events: Risk time:
From
                                                 Persons:
  DM 7497 2499
                     9996
                               2499
                                       54273.27
                                                      9996
> summary(dmS1)
Transitions:
     Тο
        DM Dead
From
                  Records:
                             Events: Risk time:
                                                  Persons:
  DM 18328 2499
                                                       9996
                     20827
                                2499
                                        54273.27
```

We see that the number of persons and events and the amount of follow-up is the same in the two data sets; only the number of records differ — the extra records all have lex.Cst = DM and lex.Xst = DM.

To see how records are split for each individual, it is useful to list the results for a few individuals (whom we selected with a view to the illustrative usefulness):

```
> wh.id <- c(9, 27, 52, 484)
> subset(dmL , lex.id %in% wh.id)[, 1:10]
lex.id
                  age tfD lex.dur lex.Cst lex.Xst sex
            per
                                                           dobth
                                                                      dodm
      9 1998.96 61.87
                        0
                              9.51
                                        DM
                                               Dead
                                                      F 1937.083 1998.956
     27 2000.04 52.71
                        0
                              9.95
                                        DM
                                                 DM
                                                      M 1947.331 2000.042
     52 1998.25 61.86
                             11.75
                                        DM
                                                 DM
                                                      F 1936.393 1998.249
                         0
    484 1998.26 62.38
                        0
                             10.93
                                        DM
                                               Dead
                                                      F 1935.881 1998.260
> subset(dmS1, lex.id %in% wh.id)[, 1:10]
lex.id
                  age
                       tfD lex.dur lex.Cst lex.Xst sex
                                                            dobth
            per
                                                                       dodm
                                         DM
                                                  DM
                                                       F 1937.083 1998.956
      9 1998.96 61.87 0.00
                               3.13
                               5.00
                                         DM
      9 2002.08 65.00 3.13
                                                  DM
                                                       F 1937.083 1998.956
      9 2007.08 70.00 8.13
                               1.38
                                         DM
                                                Dead
                                                       F 1937.083 1998.956
     27 2000.04 52.71 0.00
                               2.29
                                         DM
                                                       M 1947.331 2000.042
                                                  DM
     27 2002.33 55.00 2.29
                               5.00
                                         DM
                                                  DM
                                                       M 1947.331 2000.042
     27 2007.33 60.00 7.29
                               2.67
                                         DM
                                                  DM
                                                       M 1947.331 2000.042
     52 1998.25 61.86 0.00
                                         DM
                                                       F 1936.393 1998.249
                               3.14
                                                  DM
     52 2001.39 65.00 3.14
                               5.00
                                         DM
                                                  DM
                                                       F
                                                         1936.393 1998.249
     52 2006.39 70.00 8.14
                               3.60
                                         DM
                                                  DM
                                                       F 1936.393 1998.249
    484 1998.26 62.38 0.00
                               2.62
                                         DM
                                                  DM
                                                       F 1935.881 1998.260
    484 2000.88 65.00 2.62
                               5.00
                                         DM
                                                  DM
                                                       F 1935.881 1998.260
    484 2005.88 70.00 7.62
                               3.31
                                         DM
                                                       F 1935.881 1998.260
                                                Dead
```

The resulting object, dmS1, is again a Lexis object, and the follow-up may be split further along another time scale, for example diabetes duration, tfD. Subsequently we list the results for the chosen individuals:

```
> dmS2 <- splitLexis(dmS1, "tfD", breaks = c(0, 1, 2, 5, 10, 20, 30, 40))
> subset(dmS2, lex.id %in% wh.id)[, 1:10]
            per
lex.id
                  age
                        tfD lex.dur lex.Cst lex.Xst sex
                                                             dobth
                                                                        dodm
                                1.00
                                          DM
      9 1998.96 61.87
                       0.00
                                                  DM
                                                        F 1937.083 1998.956
      9 1999.96 62.87
                       1.00
                                1.00
                                          DM
                                                   DM
                                                        F 1937.083 1998.956
                                                        F 1937.083 1998.956
      9 2000.96 63.87
                       2.00
                                1.13
                                          DM
                                                   DM
      9 2002.08 65.00
                       3.13
                                1.87
                                          DM
                                                  DM
                                                        F 1937.083 1998.956
```

9	2003.96	66.87	5.00	3.13	DM	DM	F	1937.083	1998.956
9	2007.08	70.00	8.13	1.38	DM	Dead	F	1937.083	1998.956
27	2000.04	52.71	0.00	1.00	DM	DM	М	1947.331	2000.042
27	2001.04	53.71	1.00	1.00	DM	DM	М	1947.331	2000.042
27	2002.04	54.71	2.00	0.29	DM	DM	М	1947.331	2000.042
27	2002.33	55.00	2.29	2.71	DM	DM	М	1947.331	2000.042
27	2005.04	57.71	5.00	2.29	DM	DM	М	1947.331	2000.042
27	2007.33	60.00	7.29	2.67	DM	DM	М	1947.331	2000.042
52	1998.25	61.86	0.00	1.00	DM	DM	F	1936.393	1998.249
52	1999.25	62.86	1.00	1.00	DM	DM	F	1936.393	1998.249
52	2000.25	63.86	2.00	1.14	DM	DM	F	1936.393	1998.249
52	2001.39	65.00	3.14	1.86	DM	DM	F	1936.393	1998.249
52	2003.25	66.86	5.00	3.14	DM	DM	F	1936.393	1998.249
52	2006.39	70.00	8.14	1.86	DM	DM	F	1936.393	1998.249
52	2008.25	71.86	10.00	1.75	DM	DM	F	1936.393	1998.249
484	1998.26	62.38	0.00	1.00	DM	DM	F	1935.881	1998.260
484	1999.26	63.38	1.00	1.00	DM	DM	F	1935.881	1998.260
484	2000.26	64.38	2.00	0.62	DM	DM	F	1935.881	1998.260
484	2000.88	65.00	2.62	2.38	DM	DM	F	1935.881	1998.260
484	2003.26	67.38	5.00	2.62	DM	DM	F	1935.881	1998.260
484	2005.88	70.00	7.62	2.38	DM	DM	F	1935.881	1998.260
484	2008.26	72.38	10.00	0.93	DM	Dead	F	1935.881	1998.260

A more efficient (and more intuitive) way of making this double split is to use the splitMulti function from the popEpi package:

```
> dmM <- splitMulti(dmL,</pre>
                    age = seq(0, 100, 5),
+
                    tfD = c(0, 1, 2, 5, 10, 20, 30, 40),
+
+
                   drop = FALSE)
> summary(dmS2)
Transitions:
    То
       DM Dead Records: Events: Risk time: Persons:
From
  DM 40897 2499
                43396 2499 54273.27
                                                   9996
> summary(dmM)
Transitions:
    Τо
From
       DM Dead Records: Events: Risk time: Persons:
  DM 40897 2499
                    43396
                              2499
                                    54273.27
                                                   9996
```

Note we used the argument drop = FALSE which will retain follow-up also outside the window defined by the range of the breaks. Otherwise, the default for splitMulti would be to drop follow-up outside age [0, 100] and tfD [0, 40]. This clipping behaviour is not available in splitLexis, nevertheless this may be exactly what we want in some situations.

The recommended way of splitting follow-up time is by splitMulti, because it is faster. But you should be aware that the result is a data.table object unless you set the option "popEpi.datatable" = FALSE. In some circumstances data.tables behaves slightly differently from data.frames. See the manual for data.table.

1.3 Cutting follow up time at dates of intermediate events

If we have a recording of the date of a specific event as for example recovery or relapse, we may classify follow-up time as being before or after this intermediate event, but it requires that follow-up records that straddle the event be cut in two and placed in separate records, one representing follow-up *before* the intermediate event, and another representing follow-up *before* the intermediate event, and another representing follow-up *after* the intermediate event. This is achieved with the function cutLexis, which takes three arguments: the time point of the intermediate event, the time scale that this point refers to, and the value of the (new) state following the date. Optionally, we may also define a new time scale with the argument new.scale = .

We are interested in the time before and after inception of insulin use, which occurs at the date doins:

```
> subset(dmL, lex.id %in% wh.id)
lex.id
                   age tfD lex.dur lex.Cst lex.Xst sex
            per
                                                            dobth
                                                                       dodm
                                                                               dodth
                                                                                         dooad
      9 1998.96 61.87
                         0
                              9.51
                                         DM
                                               Dead
                                                       F 1937.083 1998.956 2008.464
                                                                                            NA
     27 2000.04 52.71
                         0
                              9.95
                                         DM
                                                 DM
                                                       M 1947.331 2000.042
                                                                                  NA 2000.125
                                         DM
     52 1998.25 61.86
                         0
                             11.75
                                                 DM
                                                       F 1936.393 1998.249
                                                                                  NA 2002.402
    484 1998.26 62.38
                         0
                             10.93
                                         DM
                                               Dead
                                                       F 1935.881 1998.260 2009.190 1998.260
    doins
               dox
       NA 2008.464
       NA 2009.997
2004.804 2009.997
2003.960 2009.190
 dmC <- cutLexis(data = dmL,</pre>
>
                    cut = dmL$doins,
+
             timescale = "per",
+
             new.state = "Ins"
+
             new.scale = "tfI")
+
> subset(dmC, lex.id %in% wh.id)[, 1:10]
            per
lex.id
                   age tfD tfI lex.dur lex.Cst lex.Xst sex
                                                                 dobth
                                   9.51
      9 1998.96 61.87 0.00
                             NA
                                              DM
                                                     Dead
                                                            F 1937.083
                                   9.95
                                              DM
     27 2000.04 52.71 0.00
                             ΝA
                                                       DM
                                                            M 1947.331
     52 1998.25 61.86 0.00
                             NA
                                   6.55
                                              DM
                                                      Ins
                                                            F 1936.393
     52 2004.80 68.41 6.55
                                   5.19
                              0
                                             Ins
                                                      Ins
                                                            F
                                                              1936.393
    484 1998.26 62.38 0.00
                                   5.70
                                              DM
                                                              1935.881
                             ΝA
                                                      Ins
                                                            F
    484 2003.96 68.08 5.70
                                   5.23
                                                     Dead
                                                            F 1935.881
                              0
                                             Ins
```

Note that the process of cutting time is simplified by having all types of events referred to the calendar time scale. This is a generally applicable advice in handling follow-up data: Get all event times as *dates*, location of events and follow-up on other time scales can then easily be derived from this.

Note that individual 52 has had his follow-up cut at 6.55 years from diabetes diagnosis and individual 484 at 5.70 years from diabetes diagnosis. This dataset could then be split along the time scales as we did before with dmL.

The result of this can also be achieved by cutting the split dataset dmS2 instead of dmL:

```
> dmS2C <- cutLexis(data = dmS2,
+ cut = dmS2$doins,
+ timescale = "per",
+ new.state = "Ins",
+ new.scale = "tfI")
> subset(dmS2C, lex.id %in% wh.id)
```

Follow-up with ${\tt Lexis}$

 lex.id per age tf) tf) sesse s									
 9 1999.96 62.87 1.00 NA 1.00 DM DM F 1937.03 1998.956 2008.464 9 2002.06 65.00 3.13 NA 1.87 DM DM F 1937.03 1998.956 2008.464 9 2007.08 70.00 8.13 NA 1.33 DH Dead F 1937.03 1998.956 2008.464 9 2007.04 52.71 0.00 NA 1.30 DM DM F 1937.03 1998.956 2008.464 100.04 53.71 1.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2001.04 53.71 1.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2002.04 54.71 2.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2003.23 55.00 2.29 NA 2.73 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.67 DM DM M 1947.331 2000.042 NA 52 1998.25 61.66 0.00 NA 1.00 DM DM F 1936.393 1998.249 NA 52 1998.25 62.66 1.00 NA 1.46 DM DM F 1936.393 1998.249 NA 52 2001.25 63.66 2.00 NA 1.46 DM DM F 1936.393 1998.249 NA 52 2002.25 63.66 0.00 NA 1.65 DM Ins F 1936.393 1998.249 NA 52 2002.25 63.66 0.00 NA 1.65 DM Ins F 1936.393 1998.249 NA 52 2002.35 60.86 1.00 NA 1.65 DM Ins F 1936.393 1998.249 NA 52 2002.35 60.00 S.14 1.59 Ins Ins F 1936.393 1998.249 NA 52 2002.56 61.66 0.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 1999.26 62.38 0.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 67.38 5.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 6									
 9 2000.96 63.87 2.00 NA 1.13 DM PI F 1937.083 1988.565 2008.464 9 2003.96 66.87 5.00 NA 3.13 DM DM F 1937.083 1988.565 2008.464 9 2007.08 70.00 8.13 NA 1.38 DM Dead F 1937.083 1988.956 2008.464 27 2000.46 52.71 0.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2002.04 55.71 1.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2002.04 55.5.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2002.04 55.5.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2007.38 60.00 7.29 NA 2.67 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1988.249 NA 52 2001.39 65.00 3.14 NA 1.86 DM DM F 1936.393 1988.249 NA 52 2001.39 65.00 3.14 NA 1.86 DM DM F 1936.393 1988.249 NA 52 2004.86 68.41 6.55 0.00 1.55 DM Ins F 1936.393 1988.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1988.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1988.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1988.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1988.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1989.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1989.249 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1989.249 NA 52 2006.38 70.00 7.62 1.92 2.238 Ino NA 1.00 DM DM F 1935.881 1989.260 2009.190 446 1993.26 62.38 0.00 NA 0.02 DM DM F 1935.881 1989.260 2009.190 446 2003.26 67.38 5.00 NA 0.22 DM DM F 1935.881 1989.260 2009.190 446 2003.26 67.38 5.00 NA 0.22 DM DM F 1935.881 1989.260 2009.190 446 2008.26 7.38 5.00 NA 0.22 DM DM F 1935.881 1989.260 2009.190 446 2008.26 7.38 5.00 NA 0.22 DM A 100 DM DM F 1935.881 1988.200 2009.190 450 2003.		O NA							
 9 2002.08 65.00 3.13 NA 1.87 9 2007.08 70.00 8.13 NA 1.38 9 2007.08 70.00 8.13 NA 1.39 9 2007.08 70.00 8.13 NA 1.30 9 2007.08 70.00 8.13 NA 1.30 9 2007.08 70.00 8.13 NA 1.00 9 2007.08 70.00 42 NA 0.29 9 2007.08 70.73 80.00 7.29 NA 2.71 9 2007.03 80.00 7.29 NA 2.72 9 2007.03 80.00 7.29 NA 2.29 9 20 20.4 86 7.71 5.00 NA 2.29 9 20 M M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 9 20 M M 1947.331 2000.042 NA 27 2007.33 60.00 7.29 NA 2.67 9 2007.28 63.86 0.00 NA 1.00 9 M M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 9 M M 1947.331 2000.042 NA 52 2000.25 63.86 0.00 NA 1.00 9 M F 1936.383 1982.49 NA 52 2001.25 66.86 5.00 NA 1.55 9 M F 1936.383 1982.49 NA 52 2001.25 66.86 5.00 NA 1.55 9 M F 1936.383 1982.49 NA 52 2002.32 66.86 5.00 NA 1.55 9 Ins F 1938.383 1982.49 NA 52 2006.37 0.00 8.14 1.59 I.86 1 Ins F 1936.383 1982.49 NA 52 2006.37 0.00 3.45 1.75 Ins Ins F 1938.383 1982.49 NA 52 2006.37 0.00 3.45 1.75 Ins Ins F 1938.581 1988.249 NA 52 2006.25 71.86 10.00 3.45 1.75 Ins Ins F 1938.581 1988.249 NA 52 2006.25 71.86 10.00 3.45 1.75 Ins Ins F 1938.581 1988.240 200.9190 444 2003.26 67.38 5.00 NA 0.02 DM DM F 1935.881 1988.260 2009.190 444 2003.26 67.38 5.00 NA 0.02 DM DM F 1935.881 1988.260 2009.190 444 2003.26 67.38 5.00 NA 0.07 DM Ins F 1935.881 1988.260 2009.190 444 2003.86 65.00 2.62 NA 2.38 DM DM F 1935.881 1988.260 2009.190 444 2003.86 65.00 2.62 NA 2.38 DM DM F 1935.881 1988.260 2009.190 444 2003.96 65.00 2.64 NA 2.009.997 2002.402 2004.804 2009.997 <	9 1999.96 62.87 1.0	O NA	1.00	DM	DM	F	1937.083	1998.956	2008.464
 9 2003.96 66.87 5.00 NA 3.13 DM DM F 1937.083 1989.856 2008.464 9 2007.08 70.00 8.13 NA 1.30 DM DM M 1947.331 2000.042 NA 27 2001.04 53.71 1.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2002.04 54.71 5.00 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2002.04 55.50 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2002.04 55.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2007.33 60.00 7.29 NA 2.67 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1982.49 NA 52 1999.25 62.86 1.00 NA 1.00 DM DM F 1936.393 1982.49 NA 52 2001.38 65.00 3.14 NA 1.46 DM DM F 1936.393 1982.49 NA 52 2001.38 65.00 3.14 NA 1.86 DM DM F 1936.393 1982.49 NA 52 2001.38 65.00 NA 1.55 DM Ins Ins F 1936.393 1982.49 NA 52 2001.38 65.00 NA 1.55 DM Ins F 1936.393 1982.49 NA 52 2002.26 6.36 5.00 NA 1.55 DM Ins F 1936.393 1982.49 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1936.393 1982.49 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1938.393 1982.49 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1938.393 1982.49 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1938.393 1982.49 NA 52 2006.38 70.00 8.14 1.59 1.86 Ins Ins F 1938.693 1982.49 NA 52 2006.38 70.00 NA 1.00 DM DM F 1935.881 1982.60 2009.190 484 1992.26 62.38 0.00 NA 0.62 DM DM F 1935.881 1982.60 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1982.60 2009.190 484 2000.28 64.08 8.01 NA 0.70 DM Ins F 1935.881 1982.60 2009.190 484 2000.86 8.00 7.62 1.92 L38 DM DM F 1935.881 1982.60 2009.190 484 2000.86 45.00 2.62 NA 2.38 DM DM F 1935.881 1982.60 2009.190 484 2000.86 45.00 2.62 NA 2.38 DM DM F 1935.881 1982.60 2009.190 484 2000.86 45.00 2.62 NA 2.38 DM DM F 1935.881 1982.60 2009.190 484 2000.86 40 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 200	9 2000.96 63.87 2.0	O NA	1.13	DM	DM	F	1937.083	1998.956	2008.464
9 2007.08 70.00 8.13 NA 1.38 DM Dead F 1937.083 1989.56 2008.464 27 2001.04 52.71 0.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2002.03 55.00 2.29 NA 2.29 DM M M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM F 1936.393 1982.49 NA 52 2001.26 63.86 5.00 NA 1.55 DM F<1936.393	9 2002.08 65.00 3.1	3 NA	1.87	DM	DM	F	1937.083	1998.956	2008.464
9 2007.08 70.00 8.13 NA 1.38 DM Dead F 1937.083 1989.56 2008.464 27 2001.04 53.71 1.00 NA 1.00 DM DM M 1947.331 2000.042 NA 27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2007.33 6.00 NA 2.29 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM M 1947.331 2000.042 NA 52 2000.25 63.86 2.00 NA 1.00 DM F 1936.393 1982.249 NA 52 2001.36 65.00 NA 1.55 DM Ins F 1936.393 1989.249 NA 52 2000.26 63.70.00 3.45 1.75 Ins Ins F 1936.383 1989.249 NA	9 2003.96 66.87 5.0	O NA	3.13	DM	DM	F	1937.083	1998.956	2008.464
27 2000.04 52.71 0.00 NA 1.00 NM DM M 1947.331 2000.042 NA 27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2002.03 55.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2007.33 60.00 NA 2.29 DM DM M 1947.331 2000.042 NA 52 1999.25 62.86 1.00 NA 1.00 DM DM F1946.333 1982.249 NA 52 2001.39 65.00 3.14 NA 1.86 DM DM F1936.393 1982.249 NA 52 2001.39 65.00 3.14 NA 1.86 Ins F1<536.393	9 2007.08 70.00 8.1	3 NA	1.38	DM	Dead	F	1937.083	1998.956	2008.464
27 2001.04 53.71 1.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2002.33 55.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2007.33 60.00 7.29 NA 2.27 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM M 1947.331 2000.042 NA 52 1998.25 61.86 1.00 NA 1.00 DM M 1947.331 2000.042 NA 52 2001.25 63.66 5.00 NA 1.00 DM FI 1936.393 1988.249 NA 52 2003.25 68.66 5.00 NA 1.55 Ims Ims FI 1936.333 1988.249 NA 52 2003.25 68.66 63.00 NA 1.00 DM FI 1936.333 1988.249 NA 52 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>М</td><td>1947.331</td><td>2000.042</td><td>NA</td></td<>						М	1947.331	2000.042	NA
27 2002.04 54.71 2.00 NA 0.29 DM DM M 1947.331 2000.042 NA 27 2007.33 55.00 2.29 NA 2.271 DM DM M 1947.331 2000.042 NA 27 2007.33 60.00 7.29 NA 2.67 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM PI 916.393 1982.249 NA 52 2000.25 63.66 5.00 NA 1.14 DM DM F 1936.393 1982.249 NA 52 2004.80 68.14 6.55 0.00 1.55 DM Ins F 1936.393 1982.249 NA 52 2006.32 71.86 61.00 3.45 1.75 Ins Ins F 1936.393 1982.249 NA 52 2006.32 71.86 1.00 NA 1.00 DM PI 1935.81 1982.260 2009.190									NA
27 2002.33 55.00 2.29 NA 2.71 DM DM M 1947.331 2000.042 NA 27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 52 1998.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1988.249 NA 52 2000.25 63.66 2.00 NA 1.100 DM DM F 1936.393 1988.249 NA 52 2003.25 66.66 5.00 NA 1.55 DM Ins F 1936.393 1988.249 NA 52 2003.25 66.66 5.00 NA 1.55 DM Ins F 1936.393 1988.249 NA 52 2003.25 66.66 5.00 NA 1.00 DM F 1936.393 1988.249 NA 52 2008.25 71.86 10.00 NA 1.00 DM F 1936.333 1988.240 NA									NA
27 2005.04 57.71 5.00 NA 2.29 DM DM M 1947.331 2000.042 NA 27 2007.33 60.00 7.29 NA 2.67 DM DM M 1947.331 2000.042 NA 52 1999.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1998.249 NA 52 2000.25 63.86 5.00 NA 1.16 DM M F 1936.393 1998.249 NA 52 2004.30 66.41 6.55 0.00 1.59 Ins F 1936.393 1998.249 NA 52 2006.39 70.00 8.14 1.55 Ins Ins F 1936.393 1998.249 NA 52 2006.30 70.00 8.14 1.59 Ins F 1936.393 1998.249 NA 44 1989.26 203.39 10.00 NA 1.00 DM M F 1935.81 1988.260 2009.190 1944 2003.26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
27 207.33 60.00 7.29 NA 2.67 DM DM M 1497.331 200.042 NA 52 1999.25 62.86 1.00 NA 1.00 DM DM F 1936.393 198.249 NA 52 2000.25 63.86 2.00 NA 1.14 DM DM F 1936.393 198.249 NA 52 2003.25 66.86 5.00 NA 1.55 DM Ins F 1936.393 198.249 NA 52 2003.25 66.86 5.00 NA 1.55 DM Ins F 1936.393 198.249 NA 52 2003.25 66.83 1.00 NA 1.00 DM Ins F 1936.393 198.249 NA 52 2008.25 71.86 1.00 NA 1.00 DM Ins F 1935.881 198.260 209.190 484 1999.26 73.8 1.00 NA 1.00 DM DM F 1935.881 198.260 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
52 1986.25 61.86 0.00 NA 1.00 DM DM F 1936.393 1986.249 NA 52 2000.25 63.86 2.00 NA 1.14 DM DM F 1936.393 1986.249 NA 52 2001.39 66.86 5.00 NA 1.55 DM Ins F 1936.393 1986.249 NA 52 2004.80 68.41 6.55 0.00 1.59 Ins F 1936.393 1986.249 NA 52 2004.80 68.41 6.55 0.00 I.59 Ins Ins F 1936.393 1986.249 NA 52 2004.80 68.41 1.05 Ins Ins F 1936.393 1986.249 NA 52 2004.80 68.41 1.00 NA 1.00 DM F 1936.881 1988.260 2009.190 484 1989.26 2.00 NA 0.00 1.92 Ins Ins F 1935.881 1988.260 2009.190 4									
52 1999.25 62.86 1.00 NA 1.00 DM PM F 1936.393 1998.249 NA 52 2000.35 63.86 2.00 NA 1.14 DM DM F 1936.393 1998.249 NA 52 2003.25 66.86 5.00 NA 1.55 DM Ins F 1936.393 1998.249 NA 52 2006.39 70.00 8.14 1.59 1.86 Ins F 1936.393 1998.249 NA 52 2006.25 71.86 10.00 NA 1.00 DM M F 1935.881 1988.260 2009.190 484 1999.26 63.38 1.00 NA 1.00 DM M F 1935.881 1988.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1988.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1988.									
52 2000, 25 63.86 2.00 NA 1.14 DM DM F 1936.393 1998.249 NA 52 2001.39 65.00 3.14 NA 1.86 DM DM F 1936.393 1998.249 NA 52 2006.39 70.00 8.14 1.55 DM Ins F 1936.393 1998.249 NA 52 2006.39 70.00 8.14 1.59 Ins Ins F 1936.393 1998.249 NA 52 2006.25 71.86 1.00 3.45 1.75 Ins Ins F 1936.393 1998.249 NA 484 1998.26 2.00 NA 1.00 DM DM F 1935.81 1988.260 2009.190 484 2002.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1988.260 2009.190 484 2003.26 67.23 5.00 NA 0.70 DM Ins F 1935.881 1988.260 2009.190 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
52 2001.39 65.00 3.14 NA 1.86 DM DM F 136.393 1982.249 NA 52 2004.80 66.86 16.55 .00 1.59 Ins F 1936.393 1982.249 NA 52 2006.39 70.00 8.14 1.59 Ins Ins F 1936.393 1982.249 NA 52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 1936.393 1982.249 NA 484 1992.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1982.260 2009.190 484 2003.26 67.38 5.00 NA 0.62 DM DM F 1935.881 1982.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1988.260 2009.190 484 2003.26 67.38 0.00 1.92 Ins Ins F 1935.881 1988.260 2009.190									
52 2003.25 66.86 5.00 NA 1.55 DM Ins F 136.393 1986.249 NA 52 2004.80 68.41 6.55 0.00 8.14 1.59 I.86 Ins Ins F 1366.393 1988.249 NA 52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 136.393 1988.249 NA 484 1998.26 62.38 0.00 NA 1.00 DM PT F 136.393 1988.249 NA 484 1998.26 62.38 1.00 NA 1.00 DM PT F 136.281 1982.260 2009.190 484 1903.26 67.38 5.00 NA 0.70 DM Ins F 135.881 1982.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 135.881 1982.260 2009.190 484 2003.26 72.38 10.00 4.30 0.93 Ins <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
52 2004.80 68.41 6.55 0.00 1.59 Ins Ins Ins F 1936.393 1998.249 NA 52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 1936.393 1998.249 NA 484 1999.26 62.38 0.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1988.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM F 1935.881 1988.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1988.260 2009.190 484 2003.26 67.38 5.00 0.00 1.92 Ins Ins F 1935.881 1989.260 2009.190 484 2005.26 72.38 10.00 4.30 0.93 Ins Dm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
52 2006.39 70.00 8.14 1.55 Ins Ins F 1936.393 1998.249 NA 484 1999.26 63.38 1.00 NA 1.00 DM PM F 1936.831 1998.260 2009.190 484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.190 484 2003.26 72.38 10.00 4.30 0.93 Ins Ins F 1935.881 1982.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Ins F <									
52 2008.25 71.86 10.00 3.45 1.75 Ins Ins F 1936.393 1998.249 NA 484 1999.26 62.38 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.62 DM Ins F 1935.881 1982.260 2009.190 484 2003.26 67.38 1.00 NA Ins Ins Ins F 1935.881 198.260 2009.190 484 2008.26 72.38 1.00 4.30 0.93 Ins Ins Dead F 1935.881 198.260 2009.190 484 2008.26 72.38 1.00 4.30 0.93 Ins Dead F <									
484 1998.26 62.38 0.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM F 1935.881 1998.260 2009.190 484 2003.96 68.8 5.70 0.00 1.92 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 484 2008.464 NA NA 2008.464 NA NA 2009.997 2000.125									
484 1999.26 63.38 1.00 NA 1.00 DM DM F 1935.881 1998.260 2009.190 484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.190 484 2003.26 67.38 1.00 4.30 0.93 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 484 2008.26 464 NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997									
484 2000.26 64.38 2.00 NA 0.62 DM DM F 1935.881 1998.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1988.260 2009.190 484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1982.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Ins F 1935.881 1982.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1982.260 2009.190 dooad doins dox NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
484 2000.88 65.00 2.62 NA 2.38 DM DM F 1935.881 1998.260 2009.190 484 2003.96 66.08 5.70 0.00 1.92 Ins F 1935.881 1988.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins F 1935.881 1988.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins F 1935.881 1988.260 2009.190 dooad doins dox 0.93 Ins Dead F 1935.881 1988.260 2009.190 dooad doins dox 0.93 Ins Dead F 1935.881 1988.260 2009.190 dooad doins dox NA NA 2008.464 NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402									
484 2003.26 67.38 5.00 NA 0.70 DM Ins F 1935.881 1998.260 2009.190 484 2005.96 68.08 5.70 0.00 1.92 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Ins F 1935.881 1998.260 2009.190 dooad doins dox Na Na Na 2008.464 NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 198.260 2003.960 2009.190 1998.260 2003.960 2009.190 198.260 2003.960 2009.190 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
484 2003.96 68.08 5.70 0.00 1.92 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 484 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804									
<pre>484 2005.88 70.00 7.62 1.92 2.38 Ins Ins F 1935.881 1998.260 2009.190 484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 dooad doins dox NA NA 2008.464 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.806 2003.960 2009.190 1988.260 2003.960 2009.190 1988.260 2003.960 2009.190</pre>									
484 2008.26 72.38 10.00 4.30 0.93 Ins Dead F 1935.881 1998.260 2009.190 dooad doins dox NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 1988.260 2003.960 2009.190 1988.260 2003.960 2009.190 1988.260 2003.960 2009.190									
dooad doins dox NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009									
NA NA 2008.464 NA NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804			0.93	Ins	Dead	F	1935.881	1998.260	2009.190
NA NA 2008.464 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997									
NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 NA NA 2008.464 2000.125 NA 2009.997 2002.125 NA 2009.997 2002.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1988.260 2003.960 2009.190									
NA NA 2008.464 NA NA 2008.464 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804									
NA NA 2008.464 NA NA 2008.464 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.9190 1988.260 2003.960 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
NA NA 2008.464 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960									
2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2									
2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960									
2000.125 NA 2009.997 2000.125 NA 2009.997 2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.96									
2000.125NA2009.9972000.125NA2009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9971998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.190									
2000.125 NA 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2000.125NA2009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9972002.4022004.8042009.9971998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.1901998.2602003.9602009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
2002.402 2004.804 2009.997 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190 1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190 1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190									
1998.260 2003.960 2009.190									
	1998.260 2003.960 2009.19	U							

1998.260 2003.960 2009.190

Thus it does not matter in which order we use splitLexis and cutLexis. Mathematicians would say that splitLexis and cutLexis are commutative.

Note that for lex.id = 484, the follow-up subsequent to the event is classified as being in state Ins, but that the final transition to state Dead is preserved. This is the point of the precursor.states= argument, which defaults to transient(dmS2)—the transient states (states that a person can exit from). It names the states (in this case DM) that will be over-written by new.state (in this case Ins), while the state Dead should not be updated even if it is after the time where the persons moves to state Ins. In other words, only state DM is a precursor to state Ins, state Dead is always subsequent to state Ins.

Note that we defined a new time scale, tfI, using the argument new.scale = tfI. This has a special status relative to the other three time scales, it is defined as time since entry into a state, namely Ins, this is noted in the time scale part of the summary of Lexis object — the information sits in the attribute time.since of the Lexis object, which can be accessed by the function timeSince() or through the summary():

```
> summary(dmS2C, timeScales = TRUE)
Transitions:
    Тο
From
        DM Ins Dead Records:
                                Events: Risk time:
                                                   Persons:
  DM 35135 1694 2048
                         38877
                                   3742
                                        45885.49
                                                       9899
  Ins 0 5762 451
                         6213
                                   451
                                         8387.77
                                                       1791
  Sum 35135 7456 2499
                         45090
                                   4193
                                          54273.27
                                                       9996
Timescales:
 per
       age
            tfD tfI
            "" "Ins"
   н н
        йπ
```

Finally we can get a quick overview of the states and transitions by using **boxes** — **scale**.**R** scales transition rates to rates per 1000 PY:

```
> boxes(dmC, boxpos = TRUE, scale.R = 1000, show.BE = TRUE)
> legendbox(70, 95)
```

The explanatory box in the upper right corner was generated by legendbox.

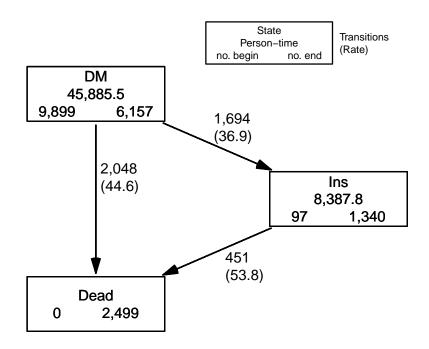


Figure 1.3: States, person years, transitions and rates in the cut dataset. The numbers in the boxes are person-years and the number of persons Beginning, resp. Ending their follow-up in each state (triggered by show.BE = TRUE). The numbers at the arrows are the number of transitions and transition rates per 1000 (triggered by scale.R = 1000)./flup-box1

Chapter 2

Modeling rates from Lexis objects

2.1 Covariates

In the dataset dmS2C there are three types of covariates that can be used to describe mortality rates:

- 1. time-dependent covariates
- 2. time scales
- 3. fixed covariates

There is only one time-dependent covariate here, namely lex.Cst, the current state of the person's follow up; it takes the values DM and Ins according to whether the person has ever purchased insulin at a given time of follow-up.

The time-scales are obvious candidates for explanatory variables for the rates, notably age and time from diagnosis (duration of diabetes) and insulin.

2.1.1 Time scales as covariates

If we want to model the effect of the time scale variables on occurrence rates, we will for each interval use either the value of the left endpoint in each interval or the middle. There is a function timeBand which returns either of these:

```
> timeBand(dmS2C, "age", "middle")[1:10]
 [1] 57.5 57.5 62.5 62.5 62.5 67.5 67.5 62.5 67.5 67.5
> # For nice printing and column labelling we use the data.frame() function:
 data.frame(dmS2C[, c("per", "age", "tfD", "lex.dur")],
>
                                              "middle"),
             mid.age = timeBand(dmS2C, "age",
+
                                              "middle"),
               mid.t = timeBand(dmS2C, "tfD",
+
              left.t = timeBand(dmS2C, "tfD", "left" ),
+
             right.t = timeBand(dmS2C, "tfD", "right"),
+
+
              fact.t = timeBand(dmS2C, "tfD", "factor"))[1:15, ]
                            tfD
                                    lex.dur mid.age mid.t left.t right.t
                                                                           fact.t
                 age
        per
  1998.917 58.66119 0.0000000 1.0000000
                                               57.5
                                                      0.5
                                                               0
                                                                            (0,1]
1
                                                                        1
  1999.917 59.66119 1.0000000 0.33880903
                                               57.5
                                                      1.5
2
                                                               1
                                                                        2
                                                                            (1,2]
                                               62.5
3
   2000.256 60.00000 1.3388090 0.66119097
                                                      1.5
                                                                       2
                                                                            (1,2]
                                                               1
  2000.917 60.66119 2.0000000 3.0000000
                                                               2
4
                                               62.5
                                                      3.5
                                                                       5
                                                                            (2, 5]
5
   2003.917 63.66119 5.0000000 1.33880903
                                               62.5
                                                      7.5
                                                               5
                                                                      10
                                                                          (5,10]
```

6	2005.256	65.00000	6.3388090	3.66119097	67.5	7.5	5	10	(5,10]
7	2008.917	68.66119	10.000000	1.08008214	67.5	15.0	10	20	(10,20]
8	2003.309	64.09035	0.000000	0.90965092	62.5	0.5	0	1	(0,1]
9	2004.218	65.00000	0.9096509	0.09034908	67.5	0.5	0	1	(0,1]
10	2004.309	65.09035	1.0000000	1.00000000	67.5	1.5	1	2	(1,2]
11	2005.309	66.09035	2.0000000	3.00000000	67.5	3.5	2	5	(2,5]
12	2008.309	69.09035	5.000000	0.90965092	67.5	7.5	5	10	(5,10]
13	2009.218	70.00000	5.9096509	0.77891855	72.5	7.5	5	10	(5,10]
14	2004.552	86.25051	0.000000	1.00000000	87.5	0.5	0	1	(0,1]
15	2005.552	87.25051	1.0000000	1.00000000	87.5	1.5	1	2	(1,2]

Note that the values of these functions are characteristics of the intervals defined by **breaks** = , *not* the midpoints nor left or right endpoints of the *actual* follow-up intervals (which would be tfD and tfD+lex.dur, respectively).

These functions are intended for modeling time scale variables as factors (categorical variables) in which case the coding must be independent of the censoring and mortality pattern — it should only depend on the chosen grouping of the time scale. Modeling time scales as *quantitative* should not be based on these codings but directly on the values of the time-scale variables, i.e. the left endpoints of the intervals.

2.1.2 Differences between time scales

Apparently, the only fixed variable is **sex**, but formally the dates of birth (**dobth**), diagnosis (**dodm**) and first insulin purchase (**doins**) are fixed covariates too. They can be constructed as origins of time scales referred to the calendar time scale. Likewise, and possibly of greater interest, we can consider these origins on the age scale, calculated as the difference between age and another time scale.

These would then be age at birth (hardly relevant since it is the same for all persons), age at diabetes diagnosis and age at insulin treatment.

2.1.3 Keeping the relation between time scales

The midpoint (as well as the right interval endpoint) should be used with caution if the variable age at diagnosis dodm-dobth is modeled too; the age at diabetes is logically equal to the difference between current age (age) and time since diabetes diagnosis (tfD):

```
> summary((dmS2$age - dmS2$tfD) - (dmS2$dodm - dmS2$dobth))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0 0
```

This calculation refers to the *start* of each interval — which are in the time scale variables in the Lexis object. But when using the middle of the intervals, this relationship is not preserved:

If all three variables are to be included in a model, we must make sure that the *substantial* relationship between the variables be maintained. One way is to recompute age at diabetes

diagnosis from the two midpoint variables, but more straightforward would be to use the left endpoint of the intervals, that is the time scale variables in the Lexis object.

If we dissolve the relationship between the variables **age**, **tfD** and age at diagnosis by grouping we may obtain identifiability of the three separate effects, but it will be at the price of an arbitrary allocation of a linear trend between them.

For the sake of clarity, consider current age, a, duration of disease, d and age at diagnosis e, where

current age = age at diagnosis + disease duration, *i.e.* $a = e + d \iff e + d - a = 0$

If we model the effect of the quantitative variables a, e and d on the log-rates by three functions f, g and $h: \log(\lambda) = f(a) + g(d) + h(e)$ then for any κ :

$$\log(\lambda) = f(a) + g(d) + h(e) + \kappa(e + d - a)$$

= $(f(a) - \kappa a) + (g(d) + \kappa d) + (h(e) + \kappa e)$
= $\tilde{f}(a) + \tilde{g}(d) + \tilde{h}(e)$

In practical modeling this will turn up as a singular model matrix with one parameter aliased, corresponding to some arbitrarily chosen value of κ (depending on software conventions for singular models). This phenomenon is well known from age-period-cohort models.

Thus we see that we can move any slope around between the three terms, so if we achieve identifiability by using grouping of one of the variables we will in reality have settled for a particular value of κ , without known why we chose just that. The solution is to resort to predictions which are independent of the particular parametrization or choose a parametrization with explicit constraints.

2.2 Modeling of rates

As mentioned, the purpose of subdividing follow-up data in smaller intervals is to be able to model effects of time scale variables as parametric functions. When we split along a time scale we can get intervals that are as small as we want; if they are sufficiently small, an assumption of constant rates in each interval becomes reasonable.

In a model that assumes a constant occurrence rate in each of the intervals the likelihood contribution from each interval is the same as the likelihood contribution from a Poisson variate D, say, with mean $\lambda \ell$ where λ is the rate and ℓ is the interval length, and where the value of the variate D is 1 or 0 according to whether an event has occurred or not. Moreover, the likelihood contributions from all follow-up intervals from a single person are *conditionally* independent (conditional on having survived till the start of the interval in question). This implies that the total contribution to the likelihood from a single person is a product of terms, and hence the same as the likelihood of a number of independent Poisson terms, one from each interval.

Note that variables are neither Poisson distributed (e.g. they can only ever assume values 0 or 1) nor independent — it is only the likelihood for the follow-up data that happens to be the same as the likelihood from independent Poisson variates. Different models can have the same likelihood, a model cannot be inferred from the likelihood.

Parametric modeling of the rates is obtained by using the *values* of the time scales for each interval as *quantitative* explanatory variables, using for example splines. And of course also the values of the fixed covariates and the time-dependent variables for each interval. Thus the model will be one where the rate is assumed constant in each (small) interval, but where a parametric form of the *size* of the rate in each interval is imposed by the model, using the time scale as a quantitative covariate.

2.2.1 Interval length

In the first chapter we illustrated cutting and splitting by listing the results for a few individuals across a number of intervals. For illustrational purposes we used 5-year age bands to avoid excessive listings, but since the doubling time for mortality on the age scale is only slightly larger than 5 years, the assumption about constant rates in each interval would be pretty far fetched if we were to use 5 year intervals.

Thus, for modeling purposes we split the follow-up in 3 month intervals. When we use intervals of 3 months length it is superfluous to split along multiple time scales — the precise location of tightly spaced splits will be irrelevant from any practical point of view. splitLexis and splitMulti will allocate the actual split times for all of the time scale variables, so these can be used directly in modeling.

So we split the cut dataset in 3 months intervals along the age scale:

```
> dmCs <- splitLexis(dmC, time.scale = "age", breaks = seq(0, 110, 1/4))
> summary(dmCs, t = T)
Transitions:
     То
                          Records:
From
          DM
               Ins Dead
                                    Events: Risk time:
                                                         Persons:
  DM 189669 1694 2048
                            193411
                                        3742
                                               45885.49
                                                              9899
           0 34886 451
                             35337
                                         451
                                                8387.77
                                                              1791
  Tns
  Sum 189669 36580 2499
                            228748
                                        4193
                                               54273.27
                                                              9996
Timescales:
  per
        age
              tfD
                     tfI
               "" "Ins"
   ни
         ñн
```

We see that we now have 228,748 records and 9996 persons, so about 23 records per person. The total risk time is 54,275 years, a bit less than 3 months on average per record as expected.

2.2.2 Practicalities for splines

In this study we want to look at how mortality depend on age (age) and time since start of insulin use (tfI). If we want to use splines in the description we must allocate knots for anchoring the splines at each of the time scales, either by some *ad hoc* method or by using some sort of penalized splines as for example by gam; the latter will not be treated here; it belongs in the realm of the mgcv package.

Here we shall use the former approach and allocate 5 knots on each of the time-scales. We allocate knots so that we have the events evenly distributed between the knots. Since the insulin state starts at 0 for all individuals we include 0 as the first knot, such that any set of natural splines with these knots will have the value 0 at 0 on the time scale.

```
> (a.kn <- with(subset(dmCs, lex.Xst == "Dead"),</pre>
                 quantile(age+lex.dur, (1:5-0.5)/5)))
+
     10%
              30%
                        50%
                                 70%
                                           90%
60.29350 71.31937 77.72758 82.72745 89.86393
> (i.kn < - c(0,
+
              with(subset(dmCs, lex.Xst == "Dead" & lex.Cst == "Ins"),
+
                   quantile(tfI+lex.dur, (1:4)/5))))
                 20%
                           40%
                                      60%
                                                80%
0.0000000 0.3093771 1.1307324 2.5489391 4.9117043
```

In the Epi package there is a convenience wrapper, Ns, for the natural spline generator ns, that takes the smallest and the largest of a set of supplied knots to be the boundary knots, so the explicit definition of the boundary knots becomes superfluous.

Note that it is a feature of the Ns (via the features of ns) that any generated spline function is 0 at the leftmost knot.

2.2.3 Poisson models

A model that describes mortality rates as only a function of age would then be:

```
> ma <- glm((lex.Xst == "Dead") ~ Ns(age, knots = a.kn),</pre>
             family = poisson,
+
             offset = log(lex.dur),
+
               data = dmCs)
+
> summary(ma)
Call:
glm(formula = (lex.Xst == "Dead") ~ Ns(age, knots = a.kn), family = poisson,
    data = dmCs, offset = log(lex.dur))
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       -3.82830
                                   0.03861
                                            -99.16
                                                     <2e-16 ***
Ns(age, knots = a.kn)1 1.36254
                                    0.08723
                                              15.62
                                                      <2e-16 ***
Ns(age, knots = a.kn)2
                        1.49446
                                    0.06845
                                              21.83
                                                      <2e-16 ***
Ns(age, knots = a.kn)3
                        2.63557
                                    0.07058
                                              37.34
                                                      <2e-16 ***
Ns(age, knots = a.kn)4
                       1.94173
                                   0.05769
                                              33.66
                                                      <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 27719 on 228747
                                     degrees of freedom
Residual deviance: 25423 on 228743 degrees of freedom
AIC: 30431
Number of Fisher Scoring iterations: 8
```

The offset, $\log(lex.dur)$ comes from the fact that the likelihood for the follow-up data during ℓ time is the same as that for independent Poisson variates with mean $\lambda \ell$, and that the default link function for the Poisson family is the log, so that we are using a linear model for the log-mean, $\log(\lambda) + \log(\ell)$. But when we want a model for the log-rate $(\log(\lambda))$, the term $\log(\ell)$ must still be included as a covariate, but with regression coefficient fixed to 1; a so-called *offset*. This is however a technicality; it just exploits that the likelihood of a particular Poisson model and that of the rates model is the same. In the Epi package is a glm family, poisreg that has a more intuitive interface to the likelihood of rates, namely where the response is a 2-column matrix of events and person-time, respectively. This is in concert with the fact that the outcome variable in follow-up studies is bivariate: (event, risk time).

```
> Ma <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),</pre>
+
           family = poisreg,
+
             data = dmCs)
> summary(Ma)
Call:
glm(formula = cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn),
    family = poisreg, data = dmCs)
Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
                      -3.82830 0.03861 -99.15 <2e-16 ***
(Intercept)
Ns(age, knots = a.kn)1 1.36254
                                 0.08723 15.62 <2e-16 ***
Ns(age, knots = a.kn)2 1.49446 0.06845 21.83 <2e-16 ***
Ns(age, knots = a.kn)3 2.63557 0.07058 37.34
                                                   <2e-16 ***
Ns(age, knots = a.kn)4 1.94173
                                 0.05769 33.66 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 27719 on 228747 degrees of freedom
Residual deviance: 25423 on 228743 degrees of freedom
AIC: 30431
Number of Fisher Scoring iterations: 7
```

Exploiting the multistate structure in the Lexis object there is a convenience wrapper for glm with the poisreg family, that just requires specification of the transitions in terms of from and to. Although it is called glm.Lexis it is *not* an S3 method for Lexis objects:

```
> Xa <- glm.Lexis(dmCs, from = "DM", to = "Dead",
+ formula = ~ Ns(age, knots = a.kn))
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
DM->Dead
```

The result is a glm object but with an extra attribute, Lexis with the name of the data, transition(s) modeled and model formula

```
> attr(Xa, "Lexis")
$data
[1] "dmCs"
$trans
[1] "DM->Dead"
$formula
~Ns(age, knots = a.kn)
<environment: 0x0000020816511680>
$scale
[1] 1
```

There are similar wrappers for gam and coxph models, gam.Lexis and coxph.Lexis, but these will not be elaborated in detail here.

The from= and to= can be omitted, in which case all possible transitions *into* any of the absorbing states is modeled:

```
> xa <- glm.Lexis(dmCs, formula = ~ Ns(age, knots = a.kn))
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for transitions:
DM->Dead
Ins->Dead
```

We can check if the four models fitted are the same:

```
> c(deviance(ma), deviance(Ma), deviance(Xa), deviance(xa))
[1] 25422.92 25422.92 20902.31 25422.92
```

Oops! the model Xa is apparently not the same as the other three? This is because the explicit specification from = "DM", to = "Dead", omits modeling contributions from the Ins \rightarrow Dead transition — the output actually said so — see also figure 1.3 on p. 12. The other three models all use both transitions — and assume that the two transition rates are the same, *i.e.* that start of insulin has no effect on mortality. We shall relax this assumption later.

The parameters from the model do not have any direct interpretation *per se*, but we can compute the estimated mortality rates for a range of ages using **ci.pred** with a suitably defined prediction data frame.

Note that if we use the **poisson** family of models, we must specify all covariates in the model, including the variable in the offset, **lex.dur** (remember that this was a covariate with coefficient fixed at 1). We set the latter to 1000, because we want the mortality rates per 1000 person-years. Using the **poisreg** family, the prediction will ignore any value of **lex.dur** specified in the prediction data frame, the returned rates will be per unit in which **lex.dur** is recorded.

```
> nd <- data.frame(age = 40:85, lex.dur = 1000)
> pr.0 <- ci.pred(ma, newdata = nd)  # mortality per 100 PY</pre>
> pr.a <- ci.pred(Ma, newdata = nd)*1000 # mortality per 100 PY
> summary(pr.0/pr.a)
   Estimate
                  2.5%
                             97.5%
Min. :1 Min. :1
                       Min. :1
1st Qu.:1 1st Qu.:1
                        1st Qu.:1
Median :1 Median :1
                       Median :1
Mean :1 Mean :1
                       Mean :1
3rd Qu.:1
            3rd Qu.:1
                         3rd Qu.:1
Max.
      :1
            Max. :1
                        Max.
                                :1
> matshade(nd$age, pr.a, plot = TRUE,
           type = "1", lty = 1,
log = "y", xlab = "Age (years)",
+
+
           vlab = "DM mortality per 1000 PY")
+
```

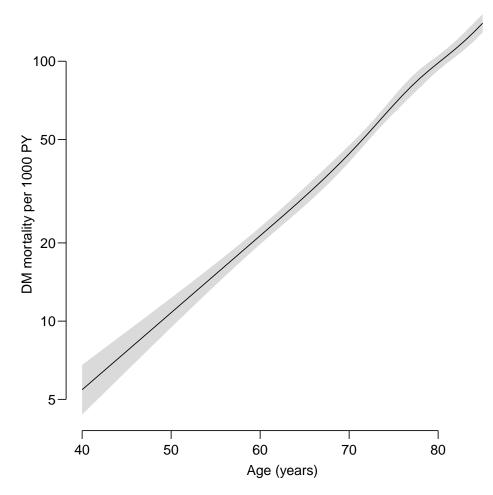


Figure 2.1: Mortality among Danish diabetes patients by age with 95% CI as shaded area. We see that the rates increase linearly on the log-scale, that is, exponentially by age../flup-pr-a

2.3 Time dependent covariate

A Poisson model approach to mortality by insulin status, would be to assume that the rate-ratio between patients on insulin and not on insulin is a fixed quantity, independent of time since start of insulin, independent of age. This is commonly termed a proportional hazards assumption, because the rates (hazards) in the two groups are proportional along the age (baseline time) scale.

```
pm <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ Ns(age, knots = a.kn)</pre>
>
+
                                                   + lex.Cst + sex,
            family = poisreg,
+
               data = dmCs)
+
>
  round(ci.exp(pm), 3)
                                            97.5%
                        exp(Est.)
                                     2.5%
(Intercept)
                             0.022
                                    0.021
                                            0.024
                             4.248
Ns(age, knots = a.kn)1
                                    3.581
                                            5.040
Ns(age, knots = a.kn)2
                             5.008
                                            5.731
                                    4.376
Ns(age, knots = a.kn)3
                            16.832 14.624 19.373
Ns(age, knots = a.kn)4
                            7.994
                                    7.126
                                           8.968
lex.CstIns
                             1.985
                                   1.791
                                           2.200
```

sexF 0.668 0.617 0.724

Again we can simplify the code using glm.Lexis:

```
> pm <- glm.Lexis(dmCs, ~ Ns(age, knots = a.kn) + lex.Cst + sex)
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for transitions:
DM->Dead
Ins->Dead
> round(ci.exp(pm), 3)
                       exp(Est.)
                                   2.5% 97.5%
(Intercept)
                          0.022 0.021 0.024
Ns(age, knots = a.kn)1
                          4.248 3.581 5.040
Ns(age, knots = a.kn)2
                          5.008 4.376 5.731
                          16.832 14.624 19.373
Ns(age, knots = a.kn)3
Ns(age, knots = a.kn)4
                          7.994 7.126 8.968
lex.CstIns
                           1.985
                                 1.791
                                        2.200
sexF
                           0.668 0.617 0.724
```

So we see that persons on insulin have about twice the mortality of persons not on insulin and that women have 2/3 the mortality of men.

2.3.1 Time since insulin start

If we want to test whether the excess mortality depends on the time since start if insulin treatment, we can add a spline terms in tfI. But since tfI is a time scale defined as time since entry into a new state (Ins), the variable tfI will be missing for those in the DM state, so before modeling we must set the NAs to 0, which we do with tsNA20 (acronym for timescale NAs to zero):

As noted before we could do this simpler with glm.Lexis, even without the from= and to= arguments, because we are modeling all transitions *into* the absorbing state (Dead):

```
> Pm <- glm.Lexis(tsNA20(dmCs),
+ form = ~ Ns(age, knots = a.kn)
+ Ns(tfI, knots = i.kn)
+ lex.Cst + sex)
stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:
DM->Dead
Ins->Dead
> c(deviance(Pm), deviance(pm))
[1] 25096.33 25096.33
> identical(model.matrix(Pm), model.matrix(pm))
[1] TRUE
```

The coding of the effect of tfI is so that the value is 0 at 0, so the meaning of the estimate of the effect of lex.Cst is the RR between persons with and without insulin, immediately after start of insulin:

We see that the effect of sex is pretty much the same as before, but the effect of lex.Cst is much larger, it now refers to a different quantity, namely the RR at tfI = 0. If we want to see the effect of time since insulin, it is best viewed jointly with the effect of age:

```
> ndI <- data.frame(expand.grid(tfI = c(NA, seq(0, 15, 0.1)),</pre>
+
                                  ai = seq(40, 80, 10)),
+
                     sex = "M",
                     lex.Cst = "Ins")
+
> ndI <- transform(ndI, age = ai+tfI)</pre>
> head(ndI)
  tfI ai sex lex.Cst age
1 NA 40
          М
                 Ins
                       ΝA
2 0.0 40
           М
                 Ins 40.0
3 0.1 40
                 Ins 40.1
          М
4 0.2 40
           М
                 Ins 40.2
5 0.3 40
           М
                 Ins 40.3
                 Ins 40.4
6 0.4 40
           М
> ndA <- data.frame(age = seq(40, 100, 0.1), tfI = 0, lex.Cst = "DM", sex = "M")
> pri <- ci.pred(Pm, ndI) * 1000
> pra <- ci.pred(Pm, ndA) * 1000
> matshade(ndI$age, pri, plot = TRUE, las = 1,
+
           xlab = "Age (years)", ylab = "DM mortality per 1000 PY",
           log = "y", lty = 1, col = "blue")
> matshade(ndA$age, pra)
```

In figure 2.2, p. 23, we see that mortality is high just after insulin start, but falls by almost a factor 3 during the first year. Also we see that there is a tendency that mortality in a given age is smallest for those with the longest duration of insulin use.

2.4 The Cox model

Note that in the implementation of Cox-model the **age** appears as response variable, slightly counter-intuitive as it really is a covariate. Hence the age part of the linear predictors is not in the model specification:

There is also a multistate wrapper for Cox models, requiring a l.h.s. side for the formula = argument:

> Cm <- coxph.Lexis(tsNA20(dmCs), + form = age ~ Ns(tfI, knots = i.kn) + lex.Cst + sex)

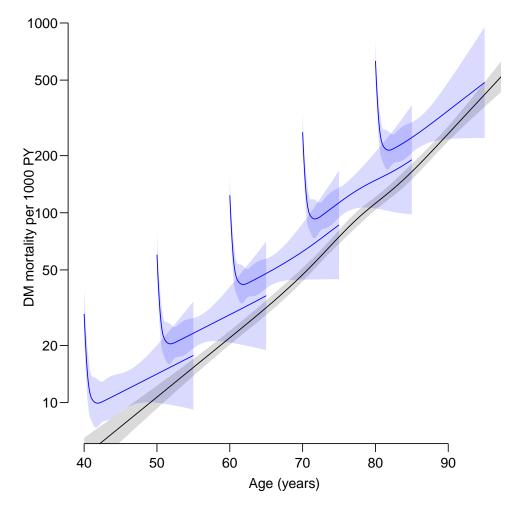


Figure 2.2: Mortality rates of persons on insulin, starting insulin at ages 40, 50, ..., 80 (blue), compared with persons not on insulin (black curve). Shaded areas are 95% CI. ./flup-ins-time

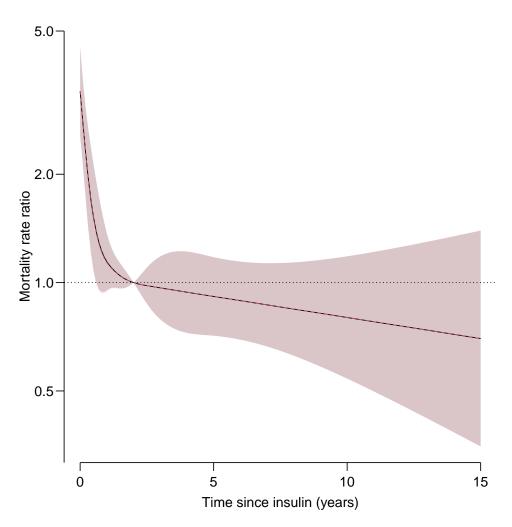
```
survival::coxph analysis of Lexis object tsNA20(dmCs):
Rates for transitions:
DM->Dead
Ins->Dead
Baseline timescale: age
> round(cbind(ci.exp(cm), ci.exp(Cm)), 4)
                       exp(Est.)
                                    2.5% 97.5% exp(Est.)
                                                            2.5%
                                                                  97.5%
Ns(tfI, knots = i.kn)1
                          0.2984 0.1942 0.4586
                                                   0.2984 0.1942 0.4586
Ns(tfI, knots = i.kn)2
                                                   0.3871 0.2901 0.5165
                          0.3871 0.2901 0.5165
Ns(tfI, knots = i.kn)3
                          0.1239 0.0629 0.2442
                                                   0.1239 0.0629 0.2442
                          0.4405 0.3484 0.5570
Ns(tfI, knots = i.kn)4
                                                   0.4405 0.3484 0.5570
lex.CstIns
                          5.6700 4.4501 7.2244
                                                   5.6700 4.4501 7.2244
lex.CstDead
                          1.0000 1.0000 1.0000
                                                   1.0000 1.0000 1.0000
sexF
                          0.6753 0.6232 0.7318
                                                   0.6753 0.6232 0.7318
```

Note that this is really a Cox model with two time scales: the baseline time scale age and the time since insulin, tfi. They are modeled differently, *age* non-parametrically and tfI with a smooth parametric spline. And only the spline effects is shown in the parameters.

We can compare the estimates from the Cox model with those from the Poisson model — we must add NAs because the Cox-model does not give the parameters for the baseline time scale (age), but also remove one of the parameters, because coxph parametrizes factors (in this case lex.Cst) by all defined levels and not only by the levels present in the dataset at hand (note the line of 1.0000000s in the print above):

```
> round(cbind(ci.exp(Pm),
         rbind(matrix(NA, 5, 3),
+
+
               ci.exp(cm)[-6, ])), 3)
                        exp(Est.)
                                    2.5%
                                          97.5% exp(Est.)
                                                            2.5% 97.5%
                           0.022
                                   0.021
(Intercept)
                                          0.024
                                                        ΝA
                                                              NA
                                                                    NA
Ns(age, knots = a.kn)1
                           4.208
                                   3.546
                                          4.993
                                                        NA
                                                              NA
                                                                    NA
Ns(age, knots = a.kn)2
                                                              NA
                           5.012
                                  4.380
                                         5.736
                                                        NA
                                                                    NA
Ns(age, knots = a.kn)3
                           16.560 14.386 19.063
                                                        NA
                                                              NA
                                                                    NA
Ns(age, knots = a.kn)4
                           7.921
                                  7.061
                                         8.885
                                                        NA
                                                              NA
                                                                    NA
Ns(tfI, knots = i.kn)1
                           0.298
                                                     0.298 0.194 0.459
                                   0.194
                                          0.458
Ns(tfI, knots = i.kn)2
                           0.385
                                   0.289
                                         0.514
                                                     0.387 0.290 0.517
Ns(tfI, knots = i.kn)3
                                                    0.124 0.063 0.244
                                         0.246
                            0.125
                                   0.064
Ns(tfI, knots = i.kn)4
                            0.438
                                   0.346
                                          0.553
                                                     0.441 0.348 0.557
lex.CstIns
                            5.632
                                   4.430
                                          7.160
                                                     5.670 4.450 7.224
sexF
                            0.674
                                  0.622
                                         0.730
                                                     0.675 0.623 0.732
```

Thus we see that the Poisson and Cox gives pretty much the same results. You may argue that Cox requires a smaller dataset, because there is no need to subdivide data in small intervals *before* insulin use. But certainly the time *after* insulin inception need to be if the effect of this time should be modeled.


The drawback of the Cox-modeling is that it is not possible to show the absolute rates as we did in figure 2.2 on 23.

2.5 Marginal effect of time since insulin

When we plot the marginal effect of tfI from the two models we get pretty much the same; here we plot the RR relative to tfI = 2 years. Note that we are deriving the RR as the ratio of two sets of predictions, from the data frames nd and nr—variables assumed to have the same values in the two data frames need not be included in the prediction frames, but numerical variables omitted must be indicated in the xvars= argument. For further details, consult the help page for ci.lin, specifically the use of a list as the ctr.mat argument:

```
> nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")
> nr <- data.frame(tfI = 2 , lex.Cst = "Ins", sex = "M")
> # We need to put in xvars="age" because age is in the model but not
> # in the prediction frames
> ppr <- ci.exp(pm, list(nd, nr), xvars = "age")
> cpr <- ci.exp(cm, list(nd, nr))
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(nd$tfI, cbind(ppr, cpr), plot = T,
+ lty = c(1, 2), log = "y",
+ xlab = "Time since insulin (years)", ylab = "Mortality rate ratio")
> abline(h = 1, lty = 3)
```

In figure 2.3, p. 25, we see that the duration effect is exactly the same from the two modeling approaches (Cox and Poisson).

We will also want the RR relative to the non-insulin users — recall these are coded 0 on the tfI variable:

```
> nd <- data.frame(tfI = seq(0, 15, , 151), lex.Cst = "Ins", sex = "M")</pre>
> nr <- data.frame(tfI =</pre>
                                              lex.Cst = "DM" , sex = "M")
                               0
 ppr <- ci.exp(pm, list(nd, nr), xvars = "age")</pre>
>
 cpr <- ci.exp(cm, list(nd, nr))</pre>
>
 par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
>
 matshade(nd$tfI, cbind(ppr, cpr), lwd = 2,
>
           xlab = "Time since insulin (years)"
+
           ylab = "Rate ratio relative to non-Insulin",
+
           lty = c(1, 2), log = "y", plot = T)
+
```

In figure 2.4, p. 26, we see the effect of increasing duration of insulin use *for a fixed age* which is a bit artificial, so we would like to see the *joint* effects of age and insulin duration. What we cannot see is how the duration affects mortality relative to current age (at the age attained at the same time as the attained tfI).

Another way of interpreting this curve is as the rate ratio relative to a person not on insulin, so we see that the RR (or hazard ratio, HR as some call it) is over 5 at the start of

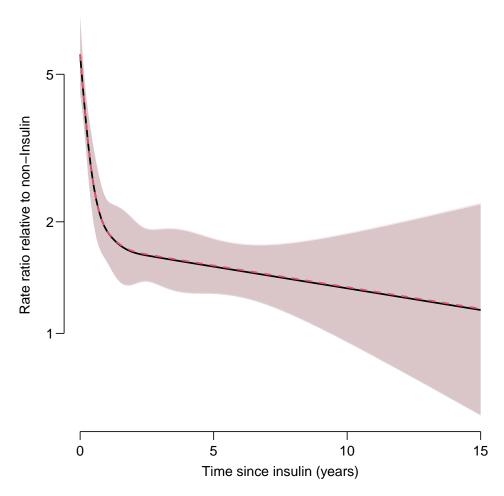


Figure 2.4: Insulin duration effect (state Ins) relative to no insulin (state DM), black from Poisson model, red from Cox model. The shape is the same as the previous figure, but the RR is now relative to non-insulin, instead of relative to insulin users at 2 years duration. The estimates from the Cox model and the Poisson model are virtually identical, and so are the standard errors, so the two shaded areas overlap almost perfectly. ./flup-leffR

insulin (the lex.Cst estimate), and decreases to about 1.5 in the long term.

Both figure 2.3 and 2.4 indicate a declining RR by insulin duration, but only from figure 2.2 it is visible that mortality actually is *increasing* by age after some 2 years after insulin start. This point would not be available if we had only fitted a Cox model where we did not have access to the baseline hazard as a function of age.

2.6 Age×duration interaction

The model we fitted assumes that the RR is the same regardless of the age at start of insulin — the hazards are multiplicative. Sometimes this is termed the proportional hazards assumption: For any fixed age the HR is the same as a function of time since insulin, and vice versa.

A more correct term would be "main effects model" — there is no interaction between

age (the baseline time scale) and other covariates. So there is really no need for the term "proportional hazards"; well defined and precise statistical terms for it has existed for eons.

2.6.1 Age at insulin start

In order to check the consistency of the multiplicative assumption across the spectrum of age at insulin inception, we can fit an interaction model. One approach to this would be using a non-linear effect of age at insulin inception (for convenience we use the same knots as for age) — note that the prediction data frames would be the same as we used above, because we do not compute age at insulin use as a separate variable, but rather enter it as the difference between current age (age) and insulin duration (tfI).

At first glance we might think of doing:

```
> imx <- glm.Lexis(tsNA20(dmCs),
+ formula = ~ Ns(age , knots = a.kn)
+ Ns( tfI, knots = i.kn)
+ Ns(age - tfI, knots = a.kn)
+ lex.Cst + sex)
stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:
DM->Dead
Ins->Dead
```

But this will fit a model where rate-ratio between persons with and without insulin at start of insulin (tfI = 0) will be the same at any age, which really is not the type of interaction we want.

We want the age-tfI term to be specific for the insulin exposed so we may use one of two other approaches, that are conceptually alike but mathematically different:

```
> Im <- glm.Lexis(tsNA20(dmCs),
                 formula = ~ Ns( age
+
                                      , knots = a.kn)
+
                           + Ns( tfI, knots = i.kn)
                           + Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)
+
                           + lex.Cst + sex)
stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:
DM->Dead
Ins->Dead
> im <- glm.Lexis(tsNA20(dmCs),</pre>
                 +
+
                   + lex.Cst:Ns(age - tfI, knots = a.kn)
+
                           + lex.Cst + sex)
stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:
DM->Dead
Ins->Dead
> ci.exp(Im)
                                                    exp(Est.)
                                                                    2.5%
                                                                               97.5%
(Intercept)
                                                   0.03088138 0.01046829 0.09109982
Ns(age, knots = a.kn)1
                                                   4.36095300 3.63069492 5.23809120
                                                   5.37618161 4.64510861 6.22231494
Ns(age, knots = a.kn)2
Ns(age, knots = a.kn)3
                                                  17.52217422 14.80810326 20.73368776
```

```
Ns(age, knots = a.kn)4
                                                    8.51763269 7.51690215
                                                                            9.65159120
Ns(tfI, knots = i.kn)1
                                                    0.29229727
                                                                0.19032360
                                                                            0.44890751
Ns(tfI, knots = i.kn)2
                                                    0.36963226 0.27665205 0.49386227
Ns(tfI, knots = i.kn)3
                                                    0.11597729 0.05899550 0.22799589
Ns(tfI, knots = i.kn)4
                                                    0.41241661 0.32492909 0.52346024
Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)1
                                                    0.76407224 0.49576920 1.17757698
Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)2
                                                    0.64838981 0.43769969 0.96049722
Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)3
                                                    0.67976574 0.48532535 0.95210660
Ns((age - tfI) * (lex.Cst == "Ins"), knots = a.kn)4
                                                    0.62110018 0.44015278 0.87643530
                                                    4.84459292 1.62770586 14.41911653
lex.CstIns
sexF
                                                    0.67510419 0.62304697 0.73151093
> ci.exp(im)
                                        exp(Est.)
                                                        2.5%
                                                                   97.5%
(Intercept)
                                       0.02141302 0.01950572 0.02350682
Ns(age, knots = a.kn)1
                                       1.24869568 0.50321454
                                                              3.09856088
Ns(age, knots = a.kn)2
                                       2.58134392 1.02999946 6.46926211
Ns(age, knots = a.kn)3
                                       4.84490068 1.39504621 16.82601074
Ns(age, knots = a.kn)4
                                       4.50406059 3.11359484 6.51547899
Ns(tfI, knots = i.kn)1
                                       0.30787963 0.20021601 0.47343799
Ns(tfI, knots = i.kn)2
                                       0.39668886 0.29607127 0.53150059
Ns(tfI, knots = i.kn)3
                                       0.13254967 0.06713624 0.26169793
Ns(tfI, knots = i.kn)4
                                       0.48371543 0.37104360 0.63060141
                                       7.65601701 5.70091060 10.28161999
lex.CstIns
sexF
                                       0.67478542 0.62271396 0.73121111
lex.CstDM:Ns(age - tfI, knots = a.kn)1 3.66854761 1.44954903 9.28443346
lex.CstIns:Ns(age - tfI, knots = a.kn)1 2.17805096 0.93906275 5.05174546
lex.CstDM:Ns(age - tfI, knots = a.kn)2 2.07263078 0.81719621 5.25675264
lex.CstIns:Ns(age - tfI, knots = a.kn)2 1.08639467 0.50381932 2.34261238
lex.CstDM:Ns(age - tfI, knots = a.kn)3 3.58067023 1.01917025 12.58003686
lex.CstIns:Ns(age - tfI, knots = a.kn)3 2.13656386 0.78459198 5.81818988
lex.CstDM:Ns(age - tfI, knots = a.kn)4 1.90423667 1.29006762 2.81079628
lex.CstIns:Ns(age - tfI, knots = a.kn)4 1.00000000 1.00000000 1.00000000
```

The first model (Im) has a common age-effect (Ns(age, ...)) for persons with and without insulin and a RR depending on insulin duration tfI and age at insulin (age-tfI). Since the linear effect of these two terms are in the model as well, a linear trend in the RR by current age (age) is accommodated as well.

The second model (im) allows age-effects that differ non-linearly between persons with and without insulin, because the interaction term lex.Cst:Ns(age-tfI... for persons not on insulin is merely an age term (since tfI is coded 0 for all follow-up not on insulin).

We can compare the models fitted:

```
> anova(imx, Im, im, test = 'Chisq')
Analysis of Deviance Table
Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(age,
    knots = a.kn) + Ns(tfI, knots = i.kn) + Ns(age - tfI, knots = a.kn) +
    lex.Cst + sex
Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(age,
    knots = a.kn) + Ns(tfI, knots = i.kn) + Ns((age - tfI) *
    (lex.Cst == "Ins"), knots = a.kn) + lex.Cst + sex
Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(age,
    knots = a.kn) + Ns(tfI, knots = i.kn) + lex.Cst + sex
Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(age,
    knots = a.kn) + Ns(tfI, knots = i.kn) + lex.Cst:Ns(age -
    tfI, knots = a.kn) + lex.Cst + sex
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
```

```
1 228734 25096

2 228733 25087 1 8.9631 0.002755 **

3 228730 25082 3 4.6804 0.196749

----

Signif. codes: 0 '***' 0.001 '*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

so we see that the models indeed are different, and moreover that the last model with a more elaborate interaction does not provide substantial further improvement, by allowing non-linear RR along the age-scale.

We can illustrate the different estimated rates from the three models in figure 2.5, p. 30:

```
> pxi <- ci.pred(imx, ndI)
> pxa <- ci.pred(imx, ndA)
> pIi <- ci.pred(Im , ndI)
> pIa <- ci.pred(Im , ndA)
> pii <- ci.pred(im , ndA)
> pia <- ci.pred(im , ndA)
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, cbind(pxi, pIi, pii)*1000, plot = T, log = "y",
+ xlab = "Age", ylab = "Mortality per 1000 PY",
+ lty = 1, lwd = 2, col = c("blue", "forestgreen", "red"), alpha = 0.1)
> matshade(ndA$age, cbind(pxa, pIa, pia)*1000,
+ lty = 1, lwd = 2, col = c("blue", "forestgreen", "red"), alpha = 0.1)
```

We can also plot the RRs only from these models (figure 2.6, p. 31); for this we need the reference frames, and the machinery from ci.exp allowing a list of two data frames:

```
> ndR <- transform(ndI, tfI = 0, lex.Cst = "DM")</pre>
> cbind(head(ndI), head(ndR))
  tfI ai sex lex.Cst age tfI ai sex lex.Cst
                                                age
                        NA
                             0 40
1
 NA 40
           М
                 Ins
                                    М
                                            DM
                                                 ΝA
2 0.0 40
                  Ins 40.0
                             0 40
                                            DM 40.0
                                    М
           М
3 0.1 40
                 Ins 40.1
                             0 40
                                            DM 40.1
                                    М
           М
4 0.2 40
                                            DM 40.2
           М
                  Ins 40.2
                             0 40
                                    М
5 0.3 40
           М
                  Ins 40.3
                             0 40
                                    М
                                            DM 40.3
6 0.4 40
           М
                  Ins 40.4
                             0 40
                                    М
                                            DM 40.4
> Rxi <- ci.exp(imx, list(ndI, ndR))</pre>
> Rii <- ci.exp(im , list(ndI, ndR))</pre>
> RIi <- ci.exp(Im , list(ndI, ndR))</pre>
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, cbind(Rxi, RIi, Rii), plot = T, log = "y",
           xlab = "Age (years)", ylab = "Rate ratio vs, non-Insulin",
           lty = 1, lwd = 2, col = c("blue", "forestgreen", "red"), alpha = 0.1)
+
> abline(h = 1)
> abline(h = ci.exp(imx, subset = "lex.Cst")[, 1], lty = "25", col = "blue")
```

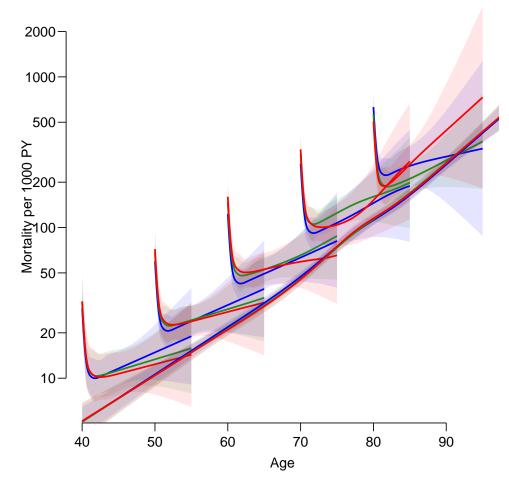


Figure 2.5: Age at insulin as interaction between age and duration, for persons starting insulin at ages $40, 50, \ldots$ and persons not on insulin. Blue curves are from the naive interaction model imx with identical RR at tfI = 0 at any age; green curves are from the interaction model with age at insulin, from the model Im with only linear differences by age, and red lines from the full interaction model im. ./flup-dur-int

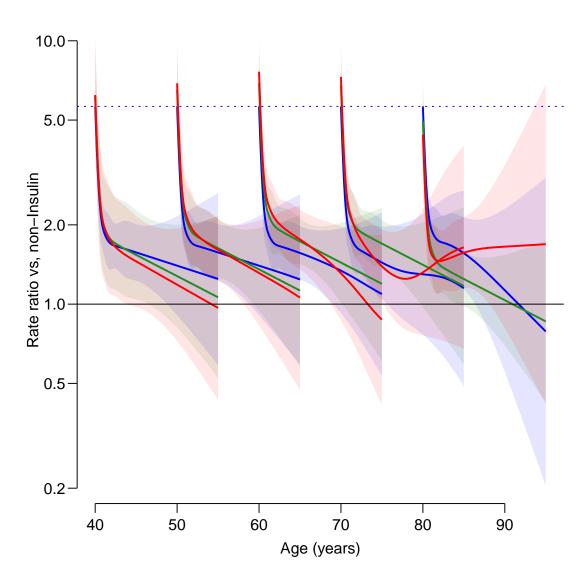


Figure 2.6: RR from three different interaction models. The horizontal dotted line is at the estimated effect of lex.Cst, to illustrate that the first model (blue) constrains this initial HR to be constant across age. The green curves are the extended interaction model, and the red the full one. ./flup-dur-int-RR

2.6.2 General interaction

As a final illustration we may want to explore a different kind of interaction, not defined from the duration — here we simplify the interaction by not using the second-last knot in the interaction terms — figure 2.7, p. 33. Note again that the prediction code is the same:

```
> gm <- glm.Lexis(tsNA20(dmCs),</pre>
+
                   formula = ~ Ns(age, knots = a.kn)
+
                             + Ns(tfI, knots = i.kn)
+
                             + lex.Cst:Ns(age, knots = a.kn):Ns(tfI, knots = i.kn)
                             + lex.Cst + sex)
+
stats::glm Poisson analysis of Lexis object tsNA20(dmCs) with log link:
Rates for transitions:
DM->Dead
Ins->Dead
> pgi <- ci.pred(gm, ndI)</pre>
> pga <- ci.pred(gm, ndA)</pre>
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, cbind(pgi, pii)*1000, plot = T,
           lty = c("solid", "21"), lend = "butt", lwd = 2, log = "y"
+
+
           xlab = "Age (years)", ylab = "Mortality rates per 1000 PY",
+
           alpha = c(0.2, 0.1), col = c("black", "red"))
> matshade(ndA$age, cbind(pga, pia)*1000,
           lty = c("solid", "21"), lend = "butt", lwd = 2,
+
           alpha = c(0.2, 0.1), col = c("black", "red"))
```

This is in figure 2.7, p. 33.

2.6.3 Evaluating interactions

Here we see that the interaction effect is such that in the older ages the length of insulin use has an increasing effect on mortality.

Even though there is no statistically significant interaction between age and time since start of insulin, it would be illustrative to show the RR as a function of age at insulin and age at follow-up:

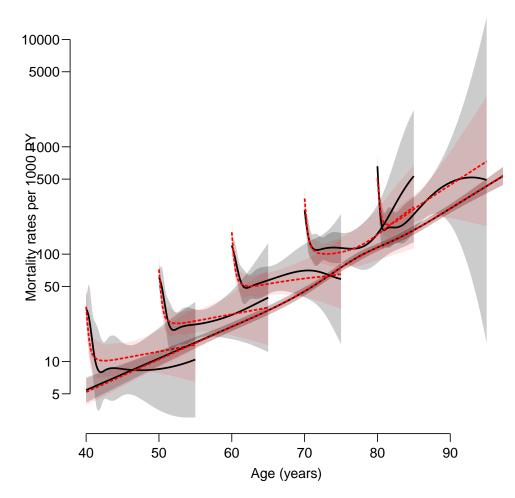
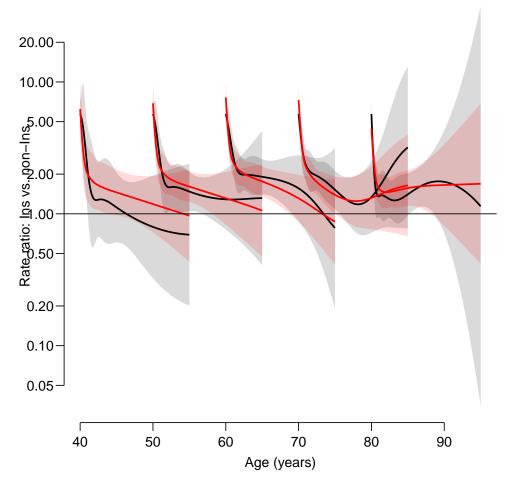
```
> ndR <- transform(ndI, lex.Cst = "DM", tfI = 0)
> iRR <- ci.exp(im, ctr.mat = list(ndI, ndR))
> gRR <- ci.exp(gm, ctr.mat = list(ndI, ndR))
> par(mar = c(3, 3, 1, 1), mgp = c(3, 1, 0)/1.6, las = 1, bty = "n")
> matshade(ndI$age, cbind(gRR, iRR), lty = 1, log = "y", plot = TRUE,
+ xlab = "Age (years)", ylab = "Rate ratio: Ins vs. non-Ins",
+ col = c("black", "red"), lwd = 2)
> abline(h = 1)
```

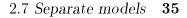
This is in figure 2.8, p. 34.

The advantage of the parametric modeling (be that with age at insulin or general spline interaction) is that it is straight-forward to *test* whether we have an interaction.

2.7 Separate models

In the above we insisted on making a joint model for the $DM \rightarrow Dead$ and the $Ins \rightarrow Dead$ transitions, but with the complications demonstrated it would actually have been more sensible to model the two transitions separately:


Figure 2.7: Spline-by-spline interaction between age and duration (model gm, black), and the interaction using a non-linear effect of age at entry (model im, red), corresponding to the red curves in figure 2.5. ./flup-splint

```
> dmd <- glm.Lexis(dmCs,</pre>
                     from = "DM", to = "Dead",
+
                     formula = ~ Ns(age, knots = a.kn)
+
+
                                + sex)
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
DM->Dead
> ind <- glm.Lexis(dmCs,</pre>
                     from = "Ins", to = "Dead",
+
                     formula = ~ Ns(age
                                             , knots = a.kn)
tfI, knots = i.kn)
+
                                + Ns(
+
+
                                + Ns(age - tfI, knots = a.kn)
                                + sex)
+
stats::glm Poisson analysis of Lexis object dmCs with log link:
Rates for the transition:
Ins->Dead
> ini <- ci.pred(ind, ndI)</pre>
> dmi <- ci.pred(dmd, ndI)</pre>
> dma <- ci.pred(dmd, ndA)</pre>
```


The estimated mortality rates are shown in figure ??, p. ??, using:

The estimated RRs can now be computed exploiting the fact that the estimates from the two models are uncorrelated, and hence qualify for ci.ratio (this and the previous graph appear in figure 2.9, p. 35)

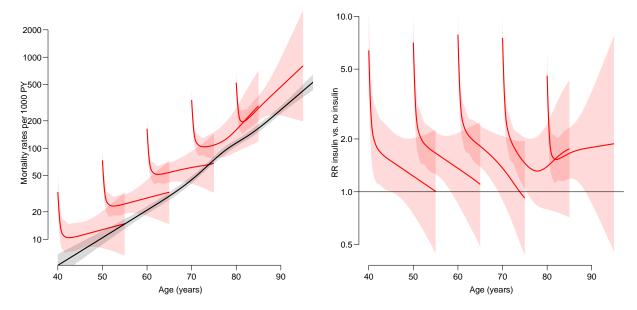


Figure 2.9: Left panel: Mortality rates from separate models for the two mortality transitions; the $DM \rightarrow Dead$ transition modeled by age alone; $Ins \rightarrow Dead$ transition modeled with spline effects of current age, time since insulin and and age at insulin. Right panel: Mortality HR of insulin vs. no insulin.

Chapter 3

More states

3.1 Subdividing states

It may be of interest to subdivide the states following the intermediate event according to whether the event has occurred or not. This will enable us to address the question of the fraction of the patients that ever go on insulin.

This is done by the argument split.states = TRUE.

```
> dmCs <- cutLexis(data = dmS2,</pre>
+
                     cut = dmS2$doins,
               timescale = "per",
+
              new.state = "Ins"
+
              new.scale = "tfl".
+
+
           split.states = TRUE)
> summary(dmCs)
Transitions:
     Тο
From
         DM Ins Dead Dead(Ins)
                                  Records:
                                             Events: Risk time:
                                                                  Persons:
                                                3742
  DM 35135 1694 2048
                                                        45885.49
                                                                       9899
                             0
                                      38877
  Ins
          0 5762
                  0
                             451
                                      6213
                                                 451
                                                        8387.77
                                                                       1791
  Sum 35135 7456 2048
                             451
                                      45090
                                                4193
                                                        54273.27
                                                                       9996
```

We can illustrate the numbers and the transitions (figure 3.1, p. 37)

```
> boxes(dmCs, boxpos = list(x = c(15, 15, 85, 85),
+ y = c(85, 15, 85, 15)),
+ scale.R = 1000, show.BE = TRUE)
> legendbox(50, 50)
```

Note that it is only the mortality rates that we have been modeling, namely the transitions $DM \rightarrow Dead$ and $Ins \rightarrow Dead(Ins)$. If we were to model the cumulative risk of using insulin we would also need a model for the $DM \rightarrow Ins$ transition. Subsequent to that we would then compute the probability of being in each state conditional on suitable starting conditions. With models where transition rates depend on several time scales this is not a trivial task. This is treated in more detail in the vignette on simLexis.

3.2 Multiple intermediate events

We may be interested in starting either insulin or OAD (oral anti-diabetic drugs), thus giving rise to more states and more time scales. This can be accomplished by the

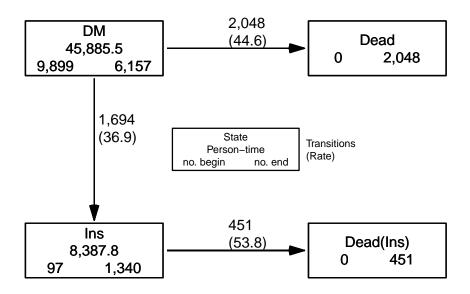


Figure 3.1: Transitions between 4 states: the numbers in the boxes are person-years (middle), and below the number of persons who start, respectively end their follow-up in each of the states. ./flup-box4

mcutLexis function, that generalizes cutLexis:

```
> dmM <- mcutLexis(dmL,</pre>
              timescale = "per",
+
                     wh = c("doins", "dooad"),
+
+
             new.states = c("Ins", "OAD"),
            new.scales = c("tfI", "tf0"),
+
          ties.resolve = TRUE)
+
NOTE: Precursor states set to DM
NOTE: 15 records with tied events times resolved (adding 0.01 random uniform),
      so results are only reproducible if the random number seed was set.
> summary(dmM, t = T)
Transitions:
     Τо
From
            DM Dead OAD
                            Ins OAD-Ins Ins-OAD
                                                  Records:
                                                             Events: Risk time:
                                                                                   Persons:
  DM
           2830 1056 2957
                            689
                                      0
                                               0
                                                       7532
                                                                 4702
                                                                        22920.17
                                                                                       7532
  OAD
              0
                 992 3327
                              0
                                   1005
                                               0
                                                       5324
                                                                 1997
                                                                        22965.30
                                                                                       5324
              0
                 152
                         0
                            462
                                      0
                                             172
                                                        786
                                                                  324
                                                                         3883.14
                                                                                        786
  Tns
                 266
                                    739
                                                                         3770.55
  OAD-Ins
              0
                         0
                              0
                                               0
                                                       1005
                                                                  266
                                                                                       1005
  Ins-OAD
              0
                  33
                         0
                              0
                                             139
                                                        172
                                                                          734.11
                                                                                        172
                                      0
                                                                   33
           2830 2499 6284 1151
  Sum
                                   1744
                                             311
                                                      14819
                                                                 7322
                                                                        54273.27
                                                                                       9996
Timescales:
               tfD
                     tfI
                            tfO
  per
        age
   ни
         ñн
                "" "Ins" "OAD"
```

We see that we now have two time scales defined as entry since into states.

```
> wh <- c(subset(dmM, lex.Cst == "Ins-OAD")$lex.id[1:2],
+ subset(dmM, lex.Cst == "OAD-Ins")$lex.id[1:2])
> subset(dmM, lex.id %in% wh)
```

lex.id	per	200	tfD	+fT	+fO	lev dur	lex.Cst	lov Vet	QAV	dobth	dodm
	1996.75	-		NA	NA	1.17	DM	OAD		1935.024	
	1997.92				0.00	8.08		OAD-Ins		1935.024	
	2005.99						OAD-Ins			1935.024	
	2003.69			NA NA	NA NA	1.88	DM	OAD OAD		1943.347	
	2005.57				0.00	3.07		OAD-Ins	F	1943.347	
	2008.64						OAD-Ins		F	1943.347	
	2009.25			NA	NA	0.03	DM	Ins		1956.029	
	2009.28				NA	0.01		Ins-OAD	_	1956.029	
	2009.29						Ins-OAD			1956.029	
	2008.37			NA	NA	0.09	DM	Ins	_	1944.434	
	2008.46					0.21		Ins-OAD		1944.434	
	2008.67						Ins-OAD	Dead		1944.434	
dodt	h doo	ad	doins	5	dox						
N	A 1997.9	915 200	05.995	5 2009	9.997						
	A 1997.9										
N	A 1997.9	915 200	05.995	5 2009	9.997						
N	A 2005.5	570 200	08.639	2009	9.997						
	A 2005.5										
N	A 2005.5	570 200	08.639	2009	9.997						
N	A 2009.2	287 200	09.276	5 2009	9.997						
N	A 2009.2	287 200	09.276	5 2009	9.997						
N	A 2009.2	287 200	09.276	5 2009	9.997						
2009.99	7 2008.6	572 200	08.459	2009	9.997						
2009.99	7 2008.6	572 200	08.459	2009	9.997						
2009.99	7 2008.6	672 200	08.459	9 2009	9.997						

We can also illustrate the transitions to the different states, as in figure 3.2:

```
> boxes(dmM, boxpos = list(x = c(15, 80, 40, 40, 85, 85),
+ y = c(50, 50, 90, 10, 90, 10)),
+ scale.R = 1000, show.BE = TRUE)
```

We may not be interested in whether persons were prescribed insulin before OAD or vice versa, in which case we would combine the levels with both insulin and OAD to one, regardless of order (figure 3.3):

```
> summary(dmMr <- Relevel(dmM, list('OAD+Ins' = 5:6), first = FALSE))</pre>
Transitions:
     Τо
            DM Dead OAD Ins OAD+Ins Records:
From
                                                 Events: Risk time:
                                                                     Persons:
  DM
          2830 1056 2957
                          689 0
                                           7532
                                                     4702 22920.17
                                                                          7532
  OAD
             0 992 3327
                          0
                                 1005
                                            5324
                                                     1997
                                                            22965.30
                                                                          5324
             0
               152
                       0
                          462
                                  172
                                            786
                                                      324
                                                             3883.14
  Ins
                                                                           786
  OAD+Ins
             0
               299
                       0
                                  878
                                           1177
                                                      299
                                                             4504.66
                                                                          1177
                            0
          2830 2499 6284 1151
                                                            54273.27
  Sum
                                 2055
                                           14819
                                                     7322
                                                                          9996
> boxes(dmMr, boxpos = list(x = c(15, 50, 15, 85, 85),
                            y = c(85, 50, 15, 85, 15)),
+
              scale.R = 1000, show.BE = TRUE)
```

Diagrams as those in figures 3.2 and 3.3 gives an overview of the possible transitions, which states it might be relevant to collapse, and which transitions to model and how.

The actual modeling of the transition rates is straightforward; split the data along some timescale and then use glm.Lexis or gam.Lexis, where it is possible to select the transitions modeled. This is also possible with the coxph.Lexis function, but it requires that a single time scale be selected as the baseline time scale, and the effect of this will not be accessible.

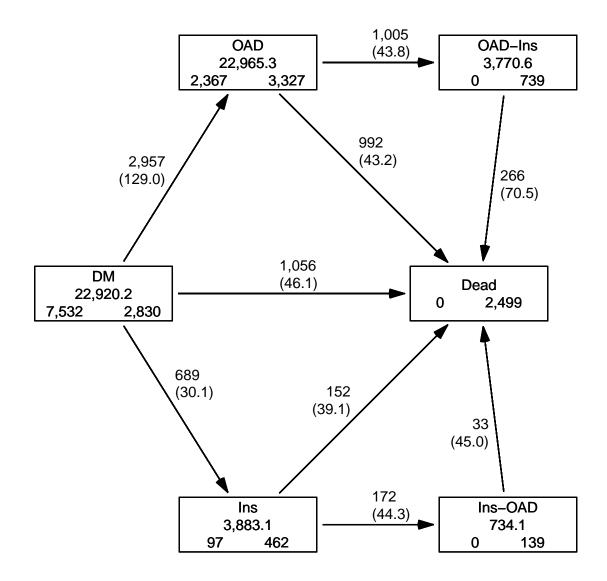


Figure 3.2: Boxes for the dmM object. The numbers in the boxes are person-years (middle), and below the number of persons who start, respectively end their follow-up in each of the states. ./flup-mbox

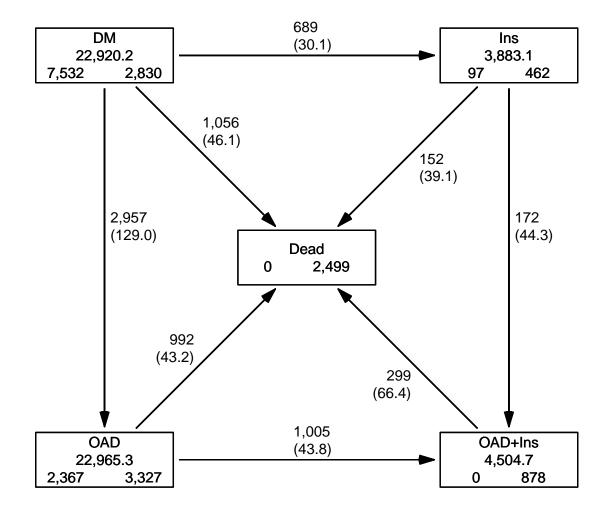


Figure 3.3: Boxes for the dmMr object with collapsed states. The numbers in the boxes are person-years (middle), and below the number of persons who start, respectively end their follow-up in each of the states. ./flup-mboxr

Chapter 4

Lexis functions

The Lexis machinery has evolved over time since it was first introduced in a workable version in Epi_1.0.5 in August 2008.

Over the years there have been additions of tools for handling multistate data. Here is a list of the current functions relating to Lexis objects with a very brief description; it does not replace the documentation. Unless otherwise stated, functions named something.Lexis (with a ".") are S3 methods for Lexis objects, so you can skip the ".Lexis" in daily use.

Define

Lexis defines a Lexis object

Cut and split

cutLexis cut follow-up at intermediate event mcutLexis cut follow-up at multiple intermediate events, keeping track of history rcutLexis cut follow-up at intermediate, possibly recurring, events, only recording the current state countLexis cut follow-up at intermediate event time and count the no. events so far splitLexis split follow up along a time scale splitMulti split follow up along a time scale — from the popEpi package, faster and has simpler syntax than splitLexis addCov.Lexis add clinical measurements at a given date to a Lexis object addDrug.Lexis add drug exposures to a Lexis object

Boxes and plots

boxes.Lexis draw a diagram of states and transitions
legendbox draw a box explaining the numbers output by boxes.Lexis
plot.Lexis draw a standard Lexis diagram
points.Lexis add points to a Lexis diagram
lines.Lexis add lines to a Lexis diagram
PY.ann.Lexis annotate life lines in a Lexis diagram

Summarize and query

summary.Lexis overview of transitions, risk time etc. levels.Lexis what are the states in the Lexis object nid.Lexis number of persons in the Lexis object — how many unique values of lex.id are present entry entry time exit exit time status status at entry or exit timeBand factor of time bands timeScales what time scales are in the Lexis object timeSince what time scales are defined as time since a given state breaks what breaks are currently defined absorbing what are the absorbing states transient what are the transient states preceding, before which states precede this succeeding, after which states can follow this tmat.Lexis transition matrix for the Lexis object

Manipulate

Simulate

simLexis simulate a Lexis object from specified transition rate models nState, pState count state occupancy from a simulated Lexis object plot.pState, lines.pState plot state occupancy from a pState object

Stack

stack.Lexis make a stacked object for simultaneous analysis of transitions —
 returns a stacked.Lexis object
subset.stacked.Lexis subsets of a stacked.Lexis object
transform.stacked.Lexis transform a stacked.Lexis object

Interface to other packages

msdata.Lexis interface to mstate package
etm.Lexis interface to etm package
crr.Lexis interface to cmprsk package

Statistical models — these are *not* S3 methods

glm.Lexis fit a glm model using the poisreg family to (hopefully) time split data

gam.Lexis fit a gam model (from the mgcv package) using the poisreg family to (hopefully) time split data

coxph.Lexis fit a Cox model to follow-up in a Lexis object

Start time: 2024-09-30, 21:40:16 End time: 2024-09-30, 21:40:58 Elapsed time: 0.7 minutes

References

- [1] B Carstensen and M Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1–18, 1 2011.
- [2] S Iacobelli and B Carstensen. Multiple time scales in multi-state models. Stat Med, 32(30):5315-5327, Dec 2013.
- [3] M Plummer and B Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. *Journal of Statistical Software*, 38(5):1–12, 1 2011.