## ---- message=FALSE, warning=FALSE-------------------------------------------- library(DisImpact) library(dplyr) # Ease in manipulations with data frames ## ----------------------------------------------------------------------------- data(ssm_cohort) # provided from DisImpact dim(ssm_cohort) # head(ssm_cohort) ## ----echo=FALSE, results='asis'----------------------------------------------- library(knitr) kable(ssm_cohort[1:6, !(names(ssm_cohort) %in% c('description', 'categoryLabel', 'source'))], caption='A few rows from the `ssm_cohort` data set. The following variables are ommitted in this print out: `description`, `categoryLabel`, `source`.') ## ----------------------------------------------------------------------------- d_relevant <- ssm_cohort %>% filter( categoryLabel %in% c('Completed Both Transfer-Level Math and English Within the District in the First Year Aligned with SCFF' , 'Attained the Vision Goal Definition of Completion' , 'Earned an Associate Degree' , 'Transferred to a Four-Year Postsecondary Institution' ) , disagg1 %in% c('Ethnicity', 'Foster Youth', 'Veterans') , disagg2 == 'None' # There's also Gender , missingFlag == 0 , ferpaFlag == 0 ) d_relevant %>% group_by(disagg1, subgroup1) %>% tally ## ----------------------------------------------------------------------------- d_relevant_gender <- ssm_cohort %>% filter( categoryLabel %in% c('Completed Both Transfer-Level Math and English Within the District in the First Year Aligned with SCFF' , 'Attained the Vision Goal Definition of Completion' , 'Earned an Associate Degree' , 'Transferred to a Four-Year Postsecondary Institution' ) , disagg1 %in% c('Ethnicity', 'Foster Youth', 'Veterans') # , disagg2 == 'None' # There's also Gender , disagg2 == 'Gender' , missingFlag == 0 , ferpaFlag == 0 ) d_relevant_gender %>% group_by(disagg1, subgroup1, disagg2, subgroup2) %>% tally ## ----warning=FALSE------------------------------------------------------------ # Example 1: By outcome, cohort di_summ_1 <- di_iterate_on_long(data=d_relevant , num_var='value' , denom_var='denom' , disagg_var_col='disagg1' , group_var_col='subgroup1' , cohort_var_col='academicYear' , summarize_by_vars=c('categoryLabel', 'cohort') , ppg_reference_groups='all but current' # PPG-1 , di_80_index_reference_groups='all but current' # Relative rates analogous to PPG-1 for reference group ) nrow(di_summ_1) nrow(d_relevant) di_summ_1 %>% head %>% as.data.frame ## ----warning=FALSE------------------------------------------------------------ # Example 2: by outcome, collapse cohort academic years di_summ_2 <- di_iterate_on_long(data=d_relevant , num_var='value' , denom_var='denom' , disagg_var_col='disagg1' , group_var_col='subgroup1' # , cohort_var_col='academicYear' , summarize_by_vars=c('categoryLabel', 'cohort') , ppg_reference_groups='all but current' , di_80_index_reference_groups='all but current' ) nrow(di_summ_2) nrow(d_relevant) di_summ_2 %>% head %>% as.data.frame ## ----warning=FALSE------------------------------------------------------------ # Example 3: by outcome, intersecting gender di_summ_3 <- di_iterate_on_long(data=d_relevant_gender , num_var='value' , denom_var='denom' , disagg_var_col='disagg1' , group_var_col='subgroup1' , disagg_var_col_2='disagg2' , group_var_col_2='subgroup2' , cohort_var_col='academicYear' , summarize_by_vars=c('categoryLabel', 'cohort') , ppg_reference_groups='overall' , di_80_index_reference_groups='all but current' ) nrow(di_summ_3) nrow(d_relevant_gender) di_summ_3 %>% head %>% as.data.frame ## ----warning=FALSE------------------------------------------------------------ # Example 4: By outcome, cohort; custom reference groups di_summ_4 <- di_iterate_on_long(data=d_relevant %>% filter(subgroup1 != 'All Masked Values') %>% # some foster youth and vetans disaggregation have just a single All Masked Values row; removing these scenarios for purpose of illustration mutate(custom_reference=ifelse(subgroup1 %in% c('White','Not Foster Youth', 'Not Veteran'), 1, 0)) # create a variable that flags the reference groups , num_var='value' , denom_var='denom' , disagg_var_col='disagg1' , group_var_col='subgroup1' , cohort_var_col='academicYear' , summarize_by_vars=c('categoryLabel', 'cohort') , custom_reference_group_flag_var='custom_reference' # Specify variable/flag for custom reference groups ) nrow(di_summ_4) di_summ_4 %>% head %>% as.data.frame ## ----------------------------------------------------------------------------- sessionInfo()