## ----install_developter, eval=FALSE------------------------------------------- # # devtools::install_github("wilsonlabgroup/DEET") # ## ----install_cran, eval=FALSE------------------------------------------------- # # # IN DEVELOPMENT # ## ----download_data, eval=FALSE------------------------------------------------ # # downloaded <- DEET_data_download("ALL") # metadata <- downloaded$metadata # DEET_feature_extract_input <- downloaded$DEET_feature_extract # DEET_enrich_input <- downloaded$DEET_enrich # ## ----orders_list, eval=FALSE-------------------------------------------------- # # DEG_list <- c("a", "b", "c", "d") # list of genes user inputs # # DEG_processed <- data.frame(gene_symbol = DEG_list) # # DEG list is the list of genes that the user inputs # # padj <- 0.049 # for(i in 2:nrow(DEG_processed)) { # padj[i] <- padj[i-1] * 0.95 # } # padj <- rev(padj) # log2fc <- rev(seq(1, 1 + 0.1*(nrow(DEG_processed) - 1), 0.1)) # # DEG_processed$padj <- padj # DEG_processed$coef <- log2fc # colnames(DEG_processed) <- c("gene_symbol", "padj", "coef") # # ## ----DEET_enrich_DF, eval=FALSE----------------------------------------------- # # data("example_DEET_enrich_input") # data("DEET_example_data") # DEET_out <- DEET_enrich(example_DEET_enrich_input, DEET_dataset = DEET_example_data) # # ## ----DEET_enrich_ordered, eval=FALSE------------------------------------------ # # data("example_DEET_enrich_input") # data("DEET_example_data") # # geneList <- example_DEET_enrich_input$gene_symbol # DEET_out <- DEET_enrich(geneList, DEET_dataset = DEET_example_data, ordered = TRUE) # # ## ----DEET_enrich_unordered, eval=FALSE---------------------------------------- # # data("example_DEET_enrich_input") # data("DEET_example_data") # # geneList <- example_DEET_enrich_input$gene_symbol # DEET_out <- DEET_enrich(geneList, DEET_dataset = DEET_example_data, ordered =FALSE) # # ## ----DEET_feature_extract_example, eval=FALSE--------------------------------- # # data(DEET_feature_extract_example_matrix) # data(DEET_feature_extract_example_response) # single1 <- DEET_feature_extract(DEET_feature_extract_example_matrix, # DEET_feature_extract_example_response,"categorical") # ## ----proccess_and_plot_DEET_enrich_main, eval=FALSE--------------------------- # # data("example_DEET_enrich_input") # data("DEET_example_data") # DEET_out <- DEET_enrich(example_DEET_enrich_input, DEET_dataset = DEET_example_data) # plotting_example <- proccess_and_plot_DEET_enrich(DEET_out, text_angle = 45, # horizontal = TRUE, topn=4) # ## ----proccess_and_plot_DEET_enrich_miss, eval=FALSE--------------------------- # # data("example_DEET_enrich_input") # data("DEET_example_data") # DEET_out <- DEET_enrich(example_DEET_enrich_input, DEET_dataset = DEET_example_data) # DEET_out$AP_DEET_DE_output <- "No enrichment to be plotted" # plotting_example <- proccess_and_plot_DEET_enrich(DEET_out, text_angle = 45, # horizontal = TRUE, topn=4) # ## ----Prep_DEET_enrichment_plot, eval=FALSE------------------------------------ # # DE_example <- DEET_out$AP_DEET_DE_output$results # # # Changes for DEET_example_plot # DE_example$term.name <- DEET_out$AP_DEET_DE_output$metadata$DEET.Name # DE_example$domain <- "DE" # DE_example$overlap.size <- lengths(DE_example$overlap) # DE_example$p.value <- DE_example$adjusted.p.val # # DE_example_plot <- DEET_enrichment_plot(list(DE_example = DE_example), "DE_example") # # ## ----correlation_plots, eval=FALSE-------------------------------------------- # # data("example_DEET_enrich_input") # data("DEET_example_data") # DEET_out <- DEET_enrich(example_DEET_enrich_input, DEET_dataset = DEET_example_data) # correlation_input <- DEET_out$DE_correlations # correlation_plots <- DEET_plot_correlation(correlation_input) # ## ----DEET_gmt_save, eval=FALSE------------------------------------------------ # # DEET_gmt <- DEET_example_data$DEET_gmt_DE # message(paste0("DEET_gmt is an object of class gmt?: ",ActivePathways::is.GMT(DEET_gmt) )) # # ActivePathways::write.GMT(DEET_gmt, file = paste0(tempdir(),"/DEET_DEs.gmt")) # # ## ----ActivePathways_Direct, eval=FALSE---------------------------------------- # # set.seed(1234) # as I sample p-values to make the toy example # # # # # For example two, I had the same genes but I shuffled the p-value # # example_DEET_enrich_input$padj2 <- sample(example_DEET_enrich_input$padj, length(example_DEET_enrich_input$padj), replace = FALSE) # # # Make a gene-by-input-list matrix of the adjusted p-values from your multiple gene sets # # AP_matrix <- as.matrix(example_DEET_enrich_input[,c("padj", "padj2")]) # # # Run activepathways on the combined matrix. # # # Get gmt file, again from the whole list: # # DEET_gmt <- DEET_example_data$DEET_gmt_DE # # head(AP_matrix) # # AP_example_out <- ActivePathways::ActivePathways(scores=AP_matrix, gmt=DEET_gmt, geneset.filter = c(5,10000),correction.method = "fdr") # # #