## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(Counternull) y = sample_data$turn_angle # fish turn angles w = sample_data$w # treatment assignments (1 = exposed, 0 = control) test_stat = "diffmeans" # average difference in the turn angles between the # two groups of fish cat(find_test_stat(y, w, test_stat)) ## ---- fig.width=4, fig.height=4----------------------------------------------- n_rand = create_null_rand(y, w, sample_matrix, test_stat) # obtain "null_rand" # object summary(n_rand) plot(n_rand) ## ----------------------------------------------------------------------------- print(sample_matrix[1:10,1:2]) ## ---- fig.width=4, fig.height=4----------------------------------------------- c_value = find_counternull_values(n_rand) summary(c_value) plot(c_value) ## ---- fig.width=4, fig.height=4----------------------------------------------- c_value = find_counternull_values(n_rand, c(55,60)) summary(c_value) plot(c_value) ## ----fig.width=4, fig.height=4------------------------------------------------ fisher = create_fisher_interval(n_rand) summary(fisher) plot(fisher) t.test(sample_data$turn_angle[w == 1], sample_data$turn_angle[w == 0], conf.level = 0.95)$conf.int ## ---- fig.width=4, fig.height=4----------------------------------------------- fun = function(x,y){ # write a function to compute KS test return(invisible(ks.test(x,y)$statistic)) } rand_matrix = create_randomization_matrix(156,1000) # create rand matrix # 156 fish, 1000 permutations n_rand_two = create_null_rand(y, w, rand_matrix, fun = fun, alternative = "greater") summary(n_rand_two) plot(n_rand_two) ## ---- fig.width=4, fig.height=4----------------------------------------------- adjusted_pvalues = adjust_pvalues(list(n_rand,n_rand_two)) cat(adjusted_pvalues)