BlockCov: Estimation of Large Block Covariance Matrices

Computation of large covariance matrices having a block structure up to a permutation of their columns and rows from a small number of samples with respect to the dimension of the matrix. The method is described in the paper Perrot-Dockès et al. (2019) <doi:10.48550/arXiv.1806.10093>.

Version: 0.1.1
Imports: Matrix, stats, Rdpack, BBmisc, dplyr, tibble, magrittr, rlang
Suggests: knitr
Published: 2019-04-13
DOI: 10.32614/CRAN.package.BlockCov
Author: M. Perrot-Dock\`es, C. Lévy-Leduc
Maintainer: Marie Perrot-Dockès <marie.perrocks at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: BlockCov results

Documentation:

Reference manual: BlockCov.pdf
Vignettes: BlockCov package (source, R code)

Downloads:

Package source: BlockCov_0.1.1.tar.gz
Windows binaries: r-devel: BlockCov_0.1.1.zip, r-release: BlockCov_0.1.1.zip, r-oldrel: BlockCov_0.1.1.zip
macOS binaries: r-release (arm64): BlockCov_0.1.1.tgz, r-oldrel (arm64): BlockCov_0.1.1.tgz, r-release (x86_64): BlockCov_0.1.1.tgz, r-oldrel (x86_64): BlockCov_0.1.1.tgz
Old sources: BlockCov archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BlockCov to link to this page.