## ----setup, fig.height = 5, fig.width = 5------------------------------------- library(BinMat) data1 = BinMatInput_reps data2 = BinMatInput_ordination # data1 contains all the replicate pairs that need to be consolidated into a consensus output # data2 contains a consolidated binary matrix with grouping information in the second column # Check the data for unwanted values check.data(data1) # Get information about peak numbers for all replicates peaks.original(data1) # Consolidate the replicate pairs in the matrix cons = consolidate(data1) # View the original matrix data1 # View the consolidated output cons # Get the Jaccard and Euclidean error rates errors(cons) # Get information about the peak numbers in the consolidated matrix peaks.consolidated(cons) # Create a hierarchical clustering tree using the UPGMA method clustTree = upgma(cons, size = 0.6) # Find samples with peaks less than a specified threshold value, and return the new, filtered data set filtered_data1 = peak.remove(cons, thresh = 6) filtered_data1 # data2 contains an already-consolidated matrix with grouping information. This is used to create a scree, shepard, and an nMDS plot. # # Find samples with peaks less than a specified threshold value, and return the new, filtered data set filtered_data2 = peak.remove(data2, thresh = 7) filtered_data2 # Get the names of the groups specified in the second column group.names(data2) # Create an object containing colours for each group # Colours: Africa = red, Australia = blue, Europe = dark green clrs = c("red", "blue", "darkgreen") # Create a scree plot to check how the number of dimensions for an nMDS plot will affect the resulting stress values scree(data2) # Create a shepard plot showing the goodness of fit for the original data vs the ordination data shepard(data2) # Create an nMDS plot for the data. Default dimension is 2 nmds(data2, colours = clrs, labs = TRUE) ## ----fig.height = 5, fig.width = 5-------------------------------------------- bunias = bunias_orientalis group.names(bunias) nmds(bunias, labs = FALSE, include_ellipse = TRUE, legend_pos = "right") ## ----fig.height = 7, fig.width = 7-------------------------------------------- nymph = nymphaea group.names(nymph) colrs = c("dodgerblue", "black", "red", "green3", "orange", "darkblue", "gold2", "darkgreen", "darkred", "grey", "darkgrey", "magenta", "darkorchid", "purple", "brown", "coral3", "turquoise", "deeppink", "lawngreen", "deepskyblue", "tomato") nmds(nymph, labs = FALSE, include_ellipse = FALSE, colours = colrs, legend_pos = "right", pt_size = 2)