
BeviMed Guide

Daniel Greene

1 Introduction

BeviMed [1] is a procedure for evaluating the evidence of association between allele configurations across rare
variants, typically within a genomic locus, and a case/control label. It is capable of inferring the posterior probability
of association, and conditional on association, the probability of each mode of inheritance and probability of
involvement of each variant. It works by applying Bayesian model comparison between to two models indexed by
γ. Under the model labelled γ = 0, the probability of case status is independent of allele configuration at the given
rare variant sites. Under the model labelled γ = 1, the probability of case status is linked to the configuration
of alleles, and a latent partition of variants into pathogenic and non-pathogenic groups conditional on a mode of
inheritance. It can also compare several alternative models, each of which includes a different subset of variants.
This has the effect of inducing a prior correlation on the variant pathogenicities, which can boost power if only a
particular (though unknown) class of variants is responsible for disease.

The aim of the package is to facilitate prioritisation of large numbers variant sets, typically drawn from different
loci, by rapid inference of the posterior distributions of γ, mode of inheritance parameter m, and indicator of
pathogenicity across variants, z. This guide describes the interface of the package in detail, relating it to the
underlying statistical model and including some implementation details. See the ‘BeviMed Introduction’ vignette
for a quick start guide. The description is given in terms of the paper, Greene et al. (2017) [1], although it is not
necessary to read the paper in order to follow it. Unless otherwise stated, N refers to the number of individuals,
k refers to the number of rare variants, m refers to the mode of inheritance (either mdom or mrec), and ‘evidence’
refers to the integrated likelihood of the data under a given model. The acronym ‘MOI’ will often be used to refer
to mode of inheritance.

2 Functions and classes

BeviMed has functions for evaluating models γ = 0, γ = 1 with m = mdom, and γ = 1 with m = mrec with respect
to the data — a logical length N vector of case/control labels y, and an N × k integer matrix of allele counts G:

� gamma0 evidence, which computes the evidence for model γ = 0, P(y|γ = 0).

� bevimed m, which samples from the posterior distribution of the model γ = 1 conditional on a given mode
of inheritance. The output yields the evidence P(y|m, γ = 1, G) and probabilities of variant pathogenicity,
P(zj |m, γ = 1, y,G) for j = 1, . . . , k.

� bevimed, which evaluates all three models in turn by calling gamma0 evidence and bevimed m with respect
to each mode of inheritance. By allowing prior probabilities and computing the evidence for each model, it
allows the posterior quantities of interest to be computed using Bayes’ theorem.

– model indicator γ, P(γ = 1|y,G)

– mode of inheritance m given association, P(m|γ = 1, y,G).

� bevimed polytomous, which evaluates model γ = 0 and an arbitrary number of association models using
bevimed m, corresponding to different subsets of variants within G and given modes of inheritance.

bevimed is simple to apply:

> obj <- bevimed(y=y, G=G)

1

It returns an object of class BeviMed, which contains the whole output of the inference. A summary of the
inference can be printed by evaluating the object in an interactive session:

> obj

--

Posterior probability of association:

0.038 [prior: 0.01]

--

Model MOI Prior Post Cases Variants

dominant dom 0.5 0.799 4.56 2.44

recessive rec 0.5 0.201 1.13 1.61

##

MOI: mode of inheritance, dominant (dom) or recessive (rec)

Prior: prior probability of model given association

Post: posterior probability of model given association

Cases: posterior expected number of cases explained

Variants: posterior expected number of variants involved in explained cases

--

Probabilities of pathogenicity for individual variants given association

##

Var Probability pathogenic

1 [0.77 =============]

2 [0.60 ==========]

3 [0.68 ============]

4 [0.16 ===]

5 [0.39 =======]

--

An object of class BeviMed is a list containing slots:

� "parameters", a list of parameter values used to call the function.

� "models", a list of BeviMed m objects returned by the bevimed m function, one for each association model -
typically one per mode of inheritance (i.e. dominant and recessive). The BeviMed m class is a list containing
samples from the posterior distributions of model parameters conditional on a given mode of inheritance (see
help page ?bevimed m for more details). As a list, the model specific results can be looked up by model using
the $ operator, e.g. x$models$dominant.

The function bevimed m uses an MCMC algorithm to sample from the posterior distribution of the parameters in
model γ = 1. Each individual has an associated ‘minimum number of alleles at pathogenic variant sites’ required
to have a pathogenic configuration of alleles. This is determined by the min ac argument (defaulting to 1), and can
be set to reflect the desired mode of inheritance. For example, in dominant inheritance, at least one pathogenic
allele would render an allele configuration pathogenic, and thus the min ac argument could be set to 1. In X-
linked recessive inheritance, at least 1 and 2 pathogenic alleles would be required for a pathogenic configuration
respectively for males and females, and thus the min ac argument could be given as a numeric vector of length N
with 1s for males and 2s for females. bevimed accepts a ploidy argument: an integer vector the same length as y
which specifies the ploidy of each individual in the locus (defaulting to 2). Internally, it uses this argument to set
min ac automatically when it calls bevimed m based on mode of inheritance.

Objects of class BeviMed typically consume a large amount of memory. Summarising objects of class BeviMed
with summary — which retains important summary statistics as a list — may be useful when performing multiple
applications. Specific summary statistics can be obtained by looking them up in these summary lists (see help page
?summary.BeviMed for names used for each statistic).

bevimed passes arguments to bevimed m through the ‘...’ argument. However, sometimes it is preferable
to pass different arguments to bevimed m depending on mode of inheritance. bevimed therefore allows mode of
inheritance specific arguments to be passed through dominant args and recessive args, which should be named
lists of arguments then only used in the corresponding calls to bevimed m. For example, it might be thought

2

that fewer variants would be linked to disease given a dominant mode of inheritance than would given recessive
inheritance, in which case dominant args could be used to pass a prior with a lower mean for the parameter to the
dominant application of bevimed m.

Similarly, bevimed polytomous evaluates association models depending on variants corresponding to those in
the given variant sets argument: a list of integer vectors, one for each model, each indexing variants with respect
to their column position in G. Arguments are passed to bevimed m through the ‘...’ argument, as with bevimed,
but model specific arguments are passed using the parameter model specific args: a list of the same length as
variant sets. The mode of inheritance parameter for each association model can be specified as using a character
vector the same length as variant sets containing elements ”dominant” or ”recessive” (defaults to "dominant").
The prior probability of association for each model can also be specified as a numeric vector of probabilities using
the argument prior prob association.

In this example we use bevimed polytomous to compare two models in the situation where the disease status
depends on only the allele configuration at the first variant site from amongst 5 columns: one depending on just
the first variant and one depending on all the variants.

> bevimed_polytomous(y=G[,1] > 0, G=G, variant_sets=list(`first`=1, `all`=1:ncol(G)))

--

Posterior probability of association:

0.132 [prior: 0.01]

--

Model MOI Prior Post Cases Variants

first dom 0.5 0.721 2.91 0.969

all dom 0.5 0.279 2.82 0.941

##

MOI: mode of inheritance, dominant (dom) or recessive (rec)

Prior: prior probability of model given association

Post: posterior probability of model given association

Cases: posterior expected number of cases explained

Variants: posterior expected number of variants involved in explained cases

--

Probabilities of pathogenicity for individual variants given association

##

Var Probability pathogenic

1 [0.96 ================]

2 [0.01]

3 [0.00]

4 [0.01]

5 [0.01]

--

3 Priors on model parameters

The user can control the prior distributions of the model parameters when applying the inference functions bevimed,
bevimed polytomous, bevimed m and gamma0 evidence as listed below.

� The probability of association, P(γ = 1|y), with argument prior prob association in the bevimed function
(defaults to 0.01).

� The probability of dominant inheritance given association, P(m = mdom), with the prior prob dominant in
the bevimed function (defaults to 0.5).

� The hyper parameters of the beta prior for the probability τ0 of observing the case label under model γ =
0. Values for the hyper parameters can be passed to the bevimed and gamma0 evidence functions as the
tau0 shape argument (defaults to a vague parameterisation of α = β = 1).

3

� The hyper parameters of the beta prior for τ and π, respectively the probabilities of observing the case label
for individuals with non-pathogenic and pathogenic allele configurations under model γ = 1. The default for
τ is the same as for τ0, but the default for π has a mean close to 1, as typically for rare diseases the variants
are high penetrance, i.e. have a high probability of causing the disease phenotype. Values for these hyper
parameters can be passed as arguments tau shape and pi shape to the bevimed and bevimed m functions.

� The prior on the indicators of variant pathogenicity, z. By default, all variants have a shared prior on their
probability of pathogenicity, zj ∼ Bernoulli(ω) with ω ∼ beta(α = 2, β = 8). The hyper parameters for ω can
be specified by the user using the parameter omega shape. However the user can also control the prior on
pathogenicity for individual variants. This is done using the variant weights parameter, a numeric vector
of length k labelled c in the model specification. The effect of the c values is given by the logistic equation:

zj ∼ Bernoulli(pj),

logit pj = ω + ϕcj ,

logϕ ∼ N(µϕ, σ
2
ϕ),

where ϕ is the scaling factor for c. By default, c is centralised on 0 so that ω is interpretable as the global rate
of pathogenicity in the locus, and ϕ has a mean of 1, so cj is interpretable as a shift in the log odds on the
prior probability of variant j being pathogenic. Thus, one could for example of use the untransformed CADD
Phred score [2] for each variant as a weight. The raw values of c as given in the variant weights arguments
will be used if the parameter standardise weights is set to FALSE. The hyper parameters µϕ and σϕ for the
prior distribution of log ϕ are respectively represented by arguments log phi mean and log phi sd. Hyper
parameters for ω and ϕ and the values for c can be passed to functions bevimed and bevimed m.

Estimating the scaling factor ϕ in this way has the advantage of maintaining power even when the weights
are counter-productive, as ϕ can take values close to 0 making the weights redundant. However, it is possible
to make the effect of variant weights c fixed by setting the parameter estimate phi to FALSE, in which case
ϕ is fixed at 1.

4 Application to real data

It is an assumption of model γ = 1 that variants are not linked across loci. We therefore recommend removal of any
first, second and third degree relatives, and filtering variants are for low allele frequency across all ethnic groups
before applying the function. Various software is available for performing these tasks: as an example ‘SAMtools’
and ‘KING’ can be used for variant filtering and inferring relatedness respectively. There is also various software
for reading VCF files into R. The ‘BeviMed with VCFs’ vignette contains instructions on how to read allele counts
across variants in a given locus into R from a VCF file directly as a matrix using simple functions depending on
the program ‘tabix’. However, although this method could be effective for testing a single locus, typically testing
association between a disease and multiple loci is required, in which case reading variants belonging to multiple loci
at the same time is likely to be more efficient. Often, it will be most effective to read data for as many variants as
possible into memory (e.g. breaking up the VCF by chromosome), and looping through loci one at a time, applying
bevimed the allele count matrix of its variants.

Typically loci would correspond to genes, but it is also applicable to non-coding loci, for example, transcription
factor binding sites. In order to increase power, variants which are unlikely to be involved in disease can be filtered
out, or have their probability of pathogenicity down-weighted using the variant weights parameter. For example,
synonymous variants could be removed, and loss-of-function variants could be up-weighted. It is also straightforward
to apply the inference to multiple sets of variants corresponding to different classes of variants for a single locus
using the bevimed polytomous function. For example, a set containing only loss-of-function variants could be used
to evaluate evidence for association between the disease and a ‘knocked-out’ gene. This increases power if the only
variants of a particular class increase disease risk. Prior probabilities of association with each model set can then
be combined with the evidence to obtain the posterior probability of association with each model/variant set.

Although typically testing association between a disease and multiple sets of variants is required, BeviMed only
provides procedures for dealing with a single set of variants at a time. This is because such analyses are often
computationally expensive due to targeting a large number of sets of variants or involve a large volume of genetic
data, and full control of the distribution of jobs between CPUs and compute nodes is required in order to best
exploit the resources available. Here we provide a simple example script which applies the inference to multiple

4

loci and tabulates the results with columns for gene name, posterior probability of association and probability of
dominant inheritance given the association. Let chr1genes be a data.frame of chromosome 1 genes with columns
for name, start position and end positon (the ‘biomaRt’ package could be used to obtain such a table), and y

be a logical vector indicating disease status, the same length as the number of samples in the VCF. Note that it
may be necessary to read the VCF data into R in smaller parts, e.g. by modifying the from and to arguments of
vcf2matrix accordingly, so as not to overwhelm the memory.

> source(paste0(system.file(package="BeviMed", "/scripts/vcf.R")))

> all_variants <- vcf2matrix("my-vcf.vcf.gz", chr="1", from=1, to=1e9, include_variant_info=TRUE)

> row_indices_per_gene <- lapply(1:nrow(chr1genes), function(i) {
+ which(all_variants$info$POS >= chr1genes$start[i] & all_variants$info$POS <= chr1genes$end[i])

+ })
> names(row_indices_per_gene) <- chr1genes$gene

>

> results <- mclapply(

+ mc.cores=16L,

+ X=chr1genes$gene,

+ FUN=function(gene) {
+ G <- all_variants$G[row_indices_per_gene[[gene]],,drop=FALSE]

+ c(

+ list(gene=gene),

+ summary(bevimed(y=y, G=G))) })
>

> results_table <- do.call(what=rbind, lapply(results, function(x) data.frame(

+ Gene=x[["gene"]],

+ `Prob. assoc`=sum(x[["prob_association"]]),

+ `Prob. dominance`=x[["prob_association"]]["dominant"]/sum(x[["prob_association"]]),

+ check.names=FALSE,

+ stringsAsFactors=FALSE

+)))

5 Performance and tuning

As an MCMC based procedure, statistics produced from bevimed have Monte Carlo error. In the implementation
in the BeviMed package, z is the only parameter which is sampled and is updated using Gibbs sampling of each
component zj in turn. If variant weights are included, ω and ϕ are also sampled using Metropolis-Hastings within
Gibbs steps, causing estimates of the evidence to have higher variance for the same number of samples. By default,
bevimed draws 1, 000 samples from each of 7 tempered chains in the MCMC algorithm, running at temperatures

t =
(
l
6

)2
for l ∈ {0, 1, . . . , 6}. We have found that this parameterisation leads to quick execution and stable results

for sample sizes up to 5, 000 and loci containing over 2, 000 variants, also allowing for the inclusion of variant weights.
However, if much larger sample sizes or larger numbers of variants are used — particularly if variant weights are
included — it may become necessary to modify the parameters controlling the sampling routine in order to improve
the accuracy of the results. Strategies for doing this include:

� increase the number of samples drawn per tempered chain using the samples per chain argument,

� increase the number tempered chains or change the distribution of temperatures using the temperatures

argument,

� pass the tune temps argument to bevimed, specifying the number of temperatures to select by interval
bisection for use in the final application,

� if estimating ϕ and ω, set tune omega and phi proposal sd=TRUE in the call to bevimed in order to adaptively
tune the standard deviations of the Metropolis-Hastings proposal distributions so that the acceptance rate
falls within a given range, defaulting to [0.3, 0.7]. If this option is used, a tuning run of the MCMC algorithm
is applied, which estimates a proposal standard deviation for each temperature using successive blocks of
tune block size samples until the desired acceptance rate is obtained.

5

It is also possible to instruct bevimed m to halt sampling once the estimated evidence lies within a given confidence
interval, or once there is sufficient confidence that the evidence is greater than some threshold. The latter might
be useful, for instance, if many regions were being tested for association and only those with very strong evidence
for association were of interest). By default, bevimed m does not attempt to stop sampling, and always draws
samples per chain samples for each tempered chain. In terms of the argument names, by setting stop early=TRUE,
bevimed m draws up to blocks batches of samples per chain samples, stopping as soon as the estimated log
evidence lies within a confidence interval of width tolerance (defaults to 1) with confidence of confidence (defaults
to 0.95) based on simulations simulations (defaults to 1, 000), or as soon as there is confidence confidence that
it is below log evidence threshold.

By default the function bevimed m stores the complete set of samples drawn during the MCMC process (after
burn-in samples are removed) and therefore this function typically uses lots of memory. The vast majority of
memory usage is expended storing the trace of samples of z, the indicator of pathogenicity for each variant) and x,
the indicator of having a pathogenic configuration for each individual. Storing these traces enables useful summary
statistics — for example the expected number of explained cases — to be computed from the output. However,
users may only be interested in the probability of association, at least in the first application. In this case, the
arguments return x trace and return z trace can be set to FALSE when calling bevimed m in order to conserve
memory, but still allow the evidence and probabilities of association to be computed.

The inference functions bevimed m, bevimed and bevimed polytomous always sample from the posterior dis-
tribution of pathogenicity of each variant represented in allele count matrix G. However, G does not necessarily
contain data relevant to pathogenicity for all variants which are represented in it. This occurs when the allele counts
for a variant are zero for all individuals, or when conditioning on recessive inheritance and alleles for the variant
are only present for individuals whose total allele count is less than their ploidy. The function subset variants

can be used to remove such variants, returning either a transformed matrix or the indices of the variants in the
original set for which there is data relevant to pathogenicity in G. Typically, G would only contain variants which
were observed in at least one of the individuals, so using this function a priori is not likely to result in a speed up
when applied conditioning on dominant inheritance, as no variants would be removed. However, it is often the case
that only a small number of variants are observed in compound heterozygotes/homozygotes, so it is likely to result
in a speed up conditioning on recessive inheritance.

References

[1] Greene D, NIHR BioResource, Richardson S, Turro E. (2017). A Fast Association Test for Identifying
Pathogenic Variants Involved in Rare Diseases. American Journal of Human Genetics, 101(1):104–114. doi:
10.1016/j.ajhg.2017.05.015.

[2] Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. (2014). A general framework for estimat-
ing the relative pathogenicity of human genetic variants. Nature Genetics, 46(3):310–315. doi: 10.1038/ng.2892.

6

