## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----installation, eval= FALSE------------------------------------------------ # devtools::install_gitlab(belayb/BayesGmed) ## ----setup-------------------------------------------------------------------- library(BayesGmed) ## ----data--------------------------------------------------------------------- head(example_data) ## ----prior, eval= FALSE------------------------------------------------------- # P <- 3 # number of covariates plus the intercept term # priors <- list(scale_m = 2.5*diag(P+1), # scale_y = 2.5*diag(P+2), # location_m = rep(0, P+1), # location_y = rep(0, P+2)) ## ----model-------------------------------------------------------------------- fit1 <- bayesgmed(outcome = "Y", mediator = "M", treat = "A", covariates = c("Z1", "Z2"), dist.y = "binary", dist.m = "binary", link.y = "logit", link.m = "logit", data = example_data) bayesgmed_summary(fit1)