## ----eval=F-------------------------------------------------------------- # #Load the binary binding network # Binding_matrix <- as.matrix(read.table('path_to_prior_bindings/prior_bidnings.txt', row.names = 1, header= TRUE)) # # #Extract TF symbols # Binding_TFs = colnames(Binding_matrix) # # #Extract Gene symbols (can be redundant) # Binding_genes = rownames(Binding_matrix) # ## ----eval=F-------------------------------------------------------------- # #Load normalized gene expression data # Exp_data <- as.matrix(read.table('path_to_gene_expression/gene_expression.txt', row.names = 1, header= TRUE)) # # #Extract gene symbols # Exp_genes=rownames(Exp_data) # ## ----eval = F------------------------------------------------------------ # library(BICORN) # # data(sample.input) ## ----eval = F------------------------------------------------------------ # # Integerate the binary binding network and gene expression data # BICORN_input<-data_integration(Binding_matrix, Binding_TFs, Binding_genes, Exp_data, Exp_genes, Minimum_gene_per_module_regulate = 2) ## ----eval = F------------------------------------------------------------ # # # Infer cis-regulatory modules and their target genes # BICORN_output<-BICORN(BICORN_input, L =100, output_threshold = 10) # ## ----eval = F------------------------------------------------------------ # # # Output candidate cis-regulatory modules # write.csv(BICORN_output$Modules, file = 'BICORN_cis_regulatory_modules.csv', quote = FALSE) # # # Output a weighted module-gene regulatory network # write.csv(BICORN_output$Posterior_module_gene_regulatory_network, file = 'BICORN_module2target_regulatory_network.csv', quote = FALSE) # # # Output a weighted TF-gene regulatory network # write.csv(BICORN_output$Posterior_TF_gene_regulatory_network, file = 'BICORN_TF2gene_regulatory_network.csv', quote = FALSE)