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1 Introduction

The twangMediation R package is an extension of the Toolkit for Weighting and Analysis of
Nonequivalent Groups, twang, R package that contains a set of functions to support causal
modeling of observational data through the estimation and evaluation of propensity scores and
propensity score-based weights. Currently, twang can be used to estimate treatment effects with
two or more treatment groups and time-varying treatments. The twangMediation package builds
on the twang package to estimate mediation effects for binary, ordinal, multinomial (categorical),
or continuous mediator(s) of a binary exposure variable. This tutorial provides an introduction to
causal mediation analysis using twangMediation and demonstrates its use through an illustrative
example. We first provide a brief overview of causal mediation, including definitions of the natural
direct and indirect estimands of interest, as well as the required identification assumptions. If
you are already familiar with causal mediation, you can skip to Section [2.I]for an introduction to
our illustrative example and to Section [5| for step-by-step instructions for the twangMediation
functions for estimating causal mediation effects.

2 An Overview of Causal Mediation

An important scientific goal in many fields of research is determining to what extent the total
effect of an exposure on an outcome is mediated by an intermediate variable on the causal
pathway between the exposure and outcome. A graph that illustrates a simple mediation model
is shown below where Y = outcome, A = exposure, X = pre-exposure covariates, and M =
mediator. Note that we use “exposure” broadly to refer to a non-randomized or randomized
condition, treatment, or intervention.

The total effect of A on Y includes two possible causal paths from A to Y: the path
A —- M — Y is the indirect effect of A on Y through M and the path A — Y is the direct



effect of A on Y that does not go through M. Direct and indirect effects are of scientific interest
because they provide a framework to quantify and characterize the mechanism by which an
exposure affects a given outcome.

Traditionally, direct and indirect effects have been evaluated using linear model specifications
for the observed data, assuming no interactions or nonlinearities involving A and M. The
definitions of the direct and indirect effects themselves rely on this linear specification. In
response, a fast-growing literature in causal inference focuses on the definition, identification,
and estimation of direct and indirect effects in fully non-parametric models (i.e., does not rely
on a linear model specification) primarily based on ideas developed by Robins and Greenland
(1992) and Pearl (2001). These developments use potential outcomes/counterfactuals to give
non-parametric definitions of the effects involved in mediation analysis, known as controlled
direct effects, natural direct and indirect effects, and interventional effects. For an introduction
to all of these effects, see Nguyen et. al. (2020). Here, we focus on the natural (in)direct effects.

Mediation is inherently about causal mechanisms and causal effects are defined as the differ-
ence between two potential outcomes for an individual. We begin by introducing the potential
outcomes needed to define the natural direct and indirect effects.

Consider the case in which A is a binary indicator of the exposure, indicating the exposed
condition (A = 1) or the comparison condition (A = 0). There are two potential outcomes for
each study participant corresponding to each exposure level a: the outcome had they received the
exposure, denoted Y7, and the outcome had they received the comparison condition, denoted Yj.
These two potential outcomes, Y7 and Yy, exist for all individuals in the population regardless of
whether the individual received the exposure or comparison condition. However, we can observe
only one of these outcomes for each participant depending on which exposure condition the
individual actually receives.

The mediator is an “intermediate” outcome of the exposure and itself has potential values.
For each exposure level a there is a corresponding potential mediator value, denoted M,. Also,
there is a corresponding potential outcome that reflects the outcome value that would arise
under the specific exposure level a and the specific potential mediator value M, — this potential
outcome is denoted Y, ps,). Causal definitions of direct and indirect effects require extending
the potential outcomes framework such that there is a potential outcome for each treatment
and mediator pair. For the case of a binary exposure A, there are four potential outcomes for
an individual, formed by crossing both potential exposure values with both potential mediator
values: Y(1,a1,), Y(0,0M0)s Y(1,M0)> and Yo ar,y- Only Yy ar,) or Yo ar,), which correspond to the
individual receiving A = 1 or A = 0 respectively, can be observed in practice. The other two
potential outcomes are hypothetical quantities (i.e., the mediator value is manipulated to take
on the value it would have under the other exposure condition); these are necessary to define
the causal estimands of interest, as we detail later. Furthermore, for a given individual ¢, we
can observe only one outcome, namely that which corresponds to the exposure level a that
the individual received: Y; (4,—a,n; ,—m). Before defining the natural direct and indirect effect
estimands, we introduce our motivating example so that we may use it to more concretely define
these effects.

2.1 Motivating Example

Our motivating example applies mediation analysis to health disparities research. Our specific
focus is examining potential mediating pathways that explain substance use disparities among
sexual minority (e.g., gay, lesbian, or bisexual) women, using data from the National Survey of
Drug Use and Health (NSDUH). Specifically, lesbian, gay, and bisexual (LGB) women report
higher rates of smoking and alcohol use than heterosexual women. We conceptualize sexual mi-
nority status as the exposure of interest, in that it gives rise to experiences of “minority stress,”
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namely excess social stressors experienced by individuals in a marginalized social group (e.g.,
LGB individuals). Manifestations of minority stress may include experiences of stigma, discrim-
ination, bullying, and family rejection, among others. Substance use among LGB individuals
has been theorized to reflect, in part, a coping strategy to minority stress experiences. In our
example, the particular outcome of interest is current smoking among LGB women, which we
know to be disproportionately higher than among heterosexual women (Schuler & Collins, 2019).
We apply mediation analysis to elucidate potential causal pathways that may give rise to these
elevated rates of smoking. Specifically, our hypothesized mediator is early smoking initiation
(i.e., prior to age 15); that is, we hypothesize that LGB girls are more likely to begin smoking
at an early age than heterosexual women, potentially in response to minority stressors. Resul-
tantly, early smoking initiation, which is a strong risk factor for developing nicotine dependence,
contributes to higher rates of smoking among LGB women. In summary, the exposure is defined
as sexual minority status (1=LGB women, O=heterosexual women), the mediator is early smok-
ing initiation (1=early initiation, 0=no early initiation), and the outcome is current smoking in
adulthood (1=yes, 0=no). Baseline covariates include age, race/ethnicity, education level, house-
hold income, employment status, marital status, and urban vs. rural residence. The following
graph depicts our motivating example:

Figure 1: Graphical depiction of the effect of LGB status on adult smoking status as
mediated by early smoking initiation.

XY ——— > Early smoking initiation (M)

N N

LGB status (A) ———————— Current smoking (Y)

2.2 Estimands: Natural direct and indirect effects

Causal effects are defined as contrasts between different potential outcomes. Specifically, our
causal estimands of interest are the natural direct and natural indirect effects, defined below.
First, we define the potential outcomes in the context of our motivating example. We consider
two possible exposure values: LGB status, A = 1, and heterosexual status, A = 0 (note that
these groups reflect the measurement of sexual identity in the NSDUH; individuals may identify
as a broader range of sexual identities). Correspondingly, there are two potential mediator values:
early smoking initiation status corresponding to LGB status, M;, and early smoking initiation
status corresponding to heterosexual status, M.

When we cross the possible exposure values and potential mediator values, there are four
potential outcome values:

® Y1 um,), the potential outcome for adult smoking status when an individual is LGB and
has the early smoking initiation status corresponding to LGB status.

® Y(0,1m,), the potential outcome for adult smoking status when an individual is heterosexual
and has the early smoking initiation status corresponding to heterosexual status.



® Y1 um,), the potential outcome for adult smoking status when an individual is LGB but
has the early smoking initiation status corresponding to heterosexual status.

® Y(0,u1,), the potential outcome for adult smoking status when an individual is heterosexual
but has the early smoking initiation status corresponding to LGB status.

As discussed previously, the latter two potential outcomes, Y(1 ry) and Y{g as,), are never ob-
served for any individual, yet allow us to more precisely define causal estimands for direct and
indirect effects. We begin by defining the total effect (TE) of A on Y in the case of a binary
exposure (a=1and o’ =0ora=0and ¢’ =1):

TE = )/;,(a,Ma) - )/i,(a’,Ma/) = }/i,a - }/i,a’ (1)

The natural direct effect (NDE) and natural indirect effect (NIE), which sum to produce the
total effect, are defined as follows:

NDE. =Y am,) — Yi(a,m,) (2)
NIE, =Y am,)— Yi(an,) (3)

Note that the NDE and NIFE definitions rely on hypothetical (unobservable) potential outcomes,
denoted in red and often referred to as cross-world counterfactuals or cross-world potential
outcomes. The subscripts for NDE denote the condition to which the mediator is held constant,
whereas the subscripts for NIE denote the condition to which the exposure is held constant.
Each decomposition includes an NIFE and an NDE corresponding to opposite subscripts.

As shown below, the NDE and NIFE sum to the TE. Consider the following decomposition
of TFE in the case of a binary exposure for a = 1 and o’ = 0:

total effect
——
Yi—-Yo = Yuu) — Yom)

natural indirect effect natural direct effect

Yo, m) = Yia,me) +Y(1,m0) = Yio,m0)
= NIE, + NDE, (4)

This decomposition is obtained by adding and subtracting Y(; /), the potential outcome we
would observe in a world where the exposure A = 1 and M is artificially manipulated to take
the value it would naturally have under the condition A = 0.

In the context of our motivating example, the NDEy term, Y(1 ar) — Y(0,n,), compares
adult smoking status corresponding to LGB versus heterosexual status, holding early smoking
initiation status to the value that would be obtained if heterosexual. The individual NDE,
will be non-null only if LGB status has an effect on adult smoking status when early smoking
initiation status is held fixed — namely, if LGB status has a direct effect on the outcome, not
through the mediator. The population version of this effect is NDEy = FE (Y(l,Mo) — Y(O,MO))~

The NIE; term Y(1 ar,) — Y(1,m,) compares adult smoking status under the early smoking
initiation status that would arise with and without the exposure condition (i.e., LGB status), for
those in the exposure group (i.e., LGB women). The individual NIE; will be non-null only if
LGB status has an indirect effect on adult smoking status via early smoking initiation among
LGB women. The population version of this effect is NIE; = FE (Y(l,Ml) — Y(l,Mo))'

The previous TE decomposition comprised of NDEy and NIF; is obtained by adding and
subtracting the term Y(; 57,). We can similarly define an alternative TE decomposition comprised
of NDE; and NIEjy, by adding and subtracting Y »7,) as follows:



total effect
—
Yi—Yo = Yuum) —Yom

natural direct effect natural indirect effect

YY(LMl) - Y(O’Ml) +Y(01M1) - YY(O,MO)
= NDEFE; + NIE, (5)

The twangMediation package provides estimates of both direct effects, NDEy and NDEj,
as well as both indirect effects, NI Ey and NIFE;. Generally, if the treatment variable is defined
as an exposure of interest versus a comparison group then the NIFE; will be the mediating effect
of interest. If the treatment variable reflects two alternative exposures of interest then the N1FE;
and NI1Ej are likely both of interest. See Nguyen et al. (2020) for a discussion of the differences
between the two decompositions and how to decide which decomposition is of interest. For our
case study, the NITF; is primarily the mediating effect of interest.

3 Identification Assumptions

In order to identify the natural (in)direct effects, we must impose assumptions that link the
potential outcomes to our actual observed data. The approach implemented in twangMediation
assumes positivity, consistency, and sequential ignorability, detailed below.

First, the positivity assumption requires that all individuals have some positive probability
of receiving each level of the exposure and each level of the mediator. If individuals do not have
a positive probability of receiving a particular level of the exposure or mediator, it is best to
remove them from the sample because a causal effect is not meaningful for those individuals.

Additionally, the consistency assumption states that the outcome observed for an individual
is identical to (i.e., consistent with) the potential outcome that corresponds to their observed
exposure value; similarly, their observed mediator value is the potential mediator value that
corresponds to their observed exposure value. In our example, if an individual’s sexual identity
is LGB (A = 1), then their observed mediator value M equals M7 and their observed outcome
Y equals Y(q,5s,). Similarly, if an individual’s sexual identity is heterosexual (A = 0), then their
observed mediator value M equals My and their observed outcome Y equals Yo as,)-

Finally, sequential ignorability refers to a set of assumptions regarding confounding. The
nonparametric assumptions typically made for identification of NDE and NIE conditioning on
pre-exposure variables X are the following:

1. No unobserved confounding of the effect of A on M
2. No unobserved confounding of the effect of A on Y
3. No unobserved confounding of the effect of M on Y
4. No confounder (observed or unobserved) of the effect of M on Y that is affected by A

If individuals are randomly assigned to levels of the exposure, then assumptions 1 and 2
should hold. However, assumptions 3 and 4 may not hold even when there is random assignment
to the exposure. See VanderWeele (2015) for further discussion of these identifying assumptions.

4 Estimation

The basic idea is to obtain estimates of F (Y(l,Ml))v E (Y(O’MO)), E (Y(l,Mo))7 and F (Y(O,Ml))
which are then plugged into Equations [ or [5] to obtain estimates of the natural (in)direct
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effects. Hong (2010) first defined the following weights w; to estimate each potential outcome,
E (Yia.n,)):

p(M; = m|A; = d', X = x) (6)
p(M; =m|A; = a, X; = x)p(A; = a|X; = x)
Under the previously stated assumptions of consistency, positivity, and sequential ignorability

(i.e., X strictly pre-exposure, or not affected by A), Huber (2014) used the following manipulation
(i.e., Bayes Rule)

w; =

p(A=alM =m,X =z)p(M =m|X =zx)

p(M=m|A=a,X =2x) =

p(A=alX =z)
to obtain an easier set of weights to estimate:
Odds Weight IPW
~
p(M=m|A=d,X =zx) p(A=d|M=m,X ==z 1

Wi = p(M=m|A=a,X =2)p(A=a|X =2) p(A=aM=m,X =z) p(A=d|X =2) (™)
These weights have been referred to as cross-world weights (Nguyen et al., 2021) as they are
used to estimate the average cross-world potential outcomes (i.e., E (Y(I,Mo)) or £/ (Y(07M1))).
Note p(A = a|X = z) in the denominator of the left hand side of Equation [7] compared to
p(A = a’|X = z) in the denominator of the right hand side; the change is the result of applying
Bayes rule for the numerator and denominator of Equation @ Following Nguyen et al. (2021),
we will refer to the first term in Equation [7] as an odds weight and the second term as an
inverse probability weight (IPW). These terms are so named because the IPW is of the standard
IPW form and the odds weight term is the usual form for estimating the average treatment
effect among the treated/exposed (ATT), with the addition of conditioning on the mediator. In
practice, the odds weight and IPW weight are calculated separately and then multiplied together
to obtain the final cross-world weights.

As implemented in twangMediation, Generalized Boosted Modeling (GBM) is the default
method used to estimate cross-world weights, whereas Huber (2014) used logistic or probit
regression. As described below, twangMediation additionally provides the option to estimate
the cross-world weights using logistic regression. Given that both TE decompositions may be
of interest to the user, twangMediation estimates the required weights for both Equation [4] and
Equation 5]

We begin with E (Y(l)Ml)) and F (Y(07M0)) — for these estimands, a = a’ in Equation
Consider the case of a = a’ = 1.

Odds Weight IPW IPW
~~ Odds Weight e Ao
p(A=1M=m,X =) 1 /-/1\ 1 (8)
wi = = _—_—
p(A=1M=m,X =z)p(A=1|X =x) p(A=1|X =2)

As we can see, in this case, the odds weight term cancels out to become 1 and our final weight
is simply the standard IPW (i.e., IPW that would be used to balance non-randomized exposure
groups in the absence of a mediator), estimated for the probability of A = 1. Similarly, when
a = a' =0, the odds weight term also cancels out to become 1 and our final weight is the IPW,
estimated for the probability of A = 0. In these cases where the final weight is equivalent to
the corresponding IPW weight, we will refer to these weights as “total effect weights.” We note
that twangMediation does not estimate these total effect weights; rather, they are estimated



previously (e.g., using a GBM propensity score model) and passed to twangMediation (see
Section . We emphasize that the user check balance and diagnostics for the total effect
weights prior to using twangMediation.

Next, we detail how twangMediation estimates the cross-world weights needed to obtain
estimates of (Y(l Mo ) (for the decomposition in Equation ) and F (Y(07 Ml)) (for the decom-
position in Equation . Consider the case when a =0 and o' = 1.

Odds Weight IPW

w__p(A:1|M:m,X:x 1
l_p(A:O|M:m,X:J:)p(A:1|X:x)

)

(9)

To calculate the odds weight term, twangMediation calls the ps function in twang to estimate
a propensity score model predicting membership in the treated/exposed group based on the
covariates X and mediator M. To calculate the IPW term, twangMediation calls the ps function
in twang to estimate a propensity score model predicting membership in the treated/exposed
group based on the covariates X. The final cross-world weights are calculated by multiplying
the IPW with the respective odds weight term.

We note that although the IPW term in Equation [] looks like the standard total effect
weights provided by the user and used in Equation 8] twangMediation estimates this term in
the context of Equation [J] to allow greater flexibility to the user. Specifically, this allows the user
to use different covariates for the mediation analysis than for estimating the total effect weights,
as might be appropriate if there are confounders related to the mediator and the outcome that
do not confound the exposure and the outcome. Alternatively, if there is random assignment to
the exposure, the user may wish to provide twangMediation with a vector of ones for the total
effect weights but specify a non-null set of covariates X for the cross-world IPW. Additionally,
this option allows the user to use different estimation methods for the total effect weights and
the cross-world IPW.

Similarly, consider the case when a =1 and o’ = 0.

Odds Weight IPW

 PA=0M=mX =z) 1 10)
YT DA=1M =m, X =2) p(A=0|X = z)

To calculate the odds weight term of Equation twangMediation calls the ps function
in twang to estimate a propensity score model predicting membership in the control/unexposed
group based on the covariates X and mediator M. To calculate the IPW term, twangMediation
calls the ps function in twang to estimate a propensity score model predicting membership in the
control/unexposed group based on the covariates X. The final cross-world weights are calculated
by multiplying the IPW with the respective odds weight term.

5 Using twangMediation for causal mediation

Below we detail the syntax for the wgtmed function, which provides estimates of the total effect,
natural indirect effects, and natural direct effects. The twangMediation wgtmed function is an
extension of the twang ps function for estimating propensity score weights using GBM. As such,
much of the syntax is similar between the wgtmed and ps functions. Please refer to the [twang
documentation for a comprehensive overview of the ps function.
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Regarding data requirements, the wgtmed function works only with binary exposure variables.
However, the mediator(s) may be defined as binary, ordinal, multinomial (categorical), or con-
tinuous variables. The ability to handle complex mediators is one of the advantages of specifying
models for the exposure in the cross-world weights, rather than for the mediator as originally
proposed by Hong (2010). The outcome may be defined as a binary or continuous variable. In
our applied example, the exposure, mediator, and outcome are all binary variables. For analyses
that include multiple mediators simultaneously, the mediators may be different variable types
(e.g., a binary mediator and a continuous mediator). Missing data is allowed for covariates, but
not the exposure, mediator, or outcome.

If you have not already done so, install twangMediation from CRAN by typing

install.packages("twangMediation"). twangMediation relies on other R packages, espe-
cially gbm, survey, twang, and lattice. You may have to run install.packages() for these
as well if they are not already installed. You will only need to do this step once. In the future,
running update.packages () regularly will ensure that you have the latest versions of the pack-
ages, including bug fixes and new features. To start, load the twangMediation package. You
may also need to load the twang package for estimating the total effect weights. You will have
to do this step once for each new R session.

> library(twangMediation)
> library(twang)

The data for the motivating example described above is available with the package and is
named NSDUH_female. The variable 1gb_flag is the exposure, defined as 1 for LGB individuals
and 0 for heterosexual individuals. The mediator, cigl5, denotes early smoking initiation (prior
to age 15), with 1=yes and 0=no. The outcome, cigmon, denotes adult smoking status (any
past-month smoking), with 1=yes and 0=no. The remaining variables are potential confounders
which will be used in estimating the weights.

> data (NSDUH_female)

The first analytic step is to estimate propensity score weights for the exposure (i.e., total effect
weights). These are the usual inverse propensity weights which account for baseline differences
across exposure groups. Note that these weights must be ATE weights rather than ATT weights.
While these weights can be estimated in any manner, we demonstrate estimating these weights
with GBM using the twang ps function. The first argument specifies a formula relating the
exposure, 1lgb_flag, to the covariates that are used to generate the total effect weights. The
code below generates an object TEps that contains the total effect weights in a data frame named
“w” that will be passed to the wgtmed function.

> TEps <- ps(formula = lgb_flag ~ age + race + educ + income + employ,
+ data=NSDUH_female, verbose=F, n.trees=6000, estimand="ATE", stop.method="ks.mean")

Next, we use the wgtmed function to obtain the mediation estimates of interest. The wgtmed
function estimates the cross-world weights using GBM (although logistic regression may also be
specified) and then estimates the total, natural direct, and natural indirect effects using both
the total effect weights and the cross-world weights. The wgtmed function returns a mediation
object, that we have named cig_med. This estimation step is computationally intensive and can
take a few minutes. We set ps_n.trees to 6000 because we previously ran the function with
10000 and we know that the 6000 is sufficient for all the models. Thus, to reduce computation
time in this tutorial, we reduced the number of trees from the default value of 10000. Note that,
if using a Windows machine, it may be necessary to increase the memory limit for R’s working
session using the memory.limit () function (e.g., memory.limit(size = 32000)). We detail the
required and optional arguments of this function below.



> cig_med <- wgtmed(formula.med = cigl5 ~ age + race + educ + income + employ,
+ a_treatment="1lgb_flag",

+ y_outcome="cigmon",

+ data=NSDUH_female,

+ method="ps",

+ total_effect_ps=TEps,

+ total_effect_stop_rule="ks.mean",
+ ps_version="gbm",

+ ps_n.trees=6000,

+ ps_interaction.depth=3,

+ ps_shrinkage=0.01,

+ ps_stop.method="ks.mean",

+ ps_verbose=FALSE)

5.1 Required arguments

formula.med Specifies a formula relating the mediator, cigl5, to the covariates that are used
to estimate the cross-world weights. Note that a model predicting the mediator based
on the specified covariates is never explicitly estimated; this formula notation is merely a
convenient way to distinguish which variables are the mediator(s) versus the covariates. In
our example, we use the same set of covariates to estimate both the total effect and the
cross-world weights. However, if conceptually appropriate, the user can specify different
covariates for the cross-world weight models (in wgtmed) and total effect models (estimated
prior to running wgtmed). However, all variables used in the total effect model should
appear in the model for the cross-world weights (but variables used in the cross-world
weight model might not appear in the model for the total effect weights).

a_treatment Specifies the name of the exposure variable, 1gb_flag. The exposure variable
must be defined as a 0/1 indicator. The variable name should be entered in quotes, as this
argument expects a character string.

y_outcome Specifies the name of the outcome variable, cigmon. The variable name should be
entered in quotes, as this argument expects a character string.

data Specifies the name of the dataset.

method Specifies the method for estimating the cross-world weights. The default, method
= "ps", estimates the weights with GBM using the ps function in twang. If method =
"logistic", then the weights are estimated using logistic regression, the approach orig-
inally proposed by Huber (2014). If method = "crossval", the weights are estimated
with GBM, but using cross-validation (rather than stopping rules) to choose the number
of GBM iterations. For method = "crossval", the number of cross-validation folds may
be specified using the argument ps_cv.folds; the default is 10.

total effect_ps or total effect_weights The object that contains the total effect weights must
be specified. The argument total_effect_ps is used to specify the ps object from esti-
mating the total effect weights using the twang ps function, which contains the total
effect weights; correspondingly, the total_effect_weights argument is left NULL. If to-
tal_effect_ps is specified, then the total_effect_stop_rule argument must also be
included to specify which stopping rule should be used for the total effect weights. Rather
than specifying a ps object, the user may alternatively specify a vector of total effect
weights using the total_effect_weights argument; in this case, the total_effect_ps
argument is left NULL. If total_effect_weights are provided, the user will get a warning
that says “Reminder to check that all confounders used for treatment (to obtain supplied



total effect weights) were included in confounders for the mediation model.” We note that
if the exposure condition was randomized, the vector of total effect weights may be set to
1 since the exposure groups would not be expected to differ with regard to covariates.

5.2 Optional arguments

ps_stop.method This argument allows the user to specify one or more stopping rules used
to select the optimal number of GBM iterations for estimating the cross-world weights.
The stopping rules are all metrics that quantify balance (or equivalence) between ex-
posure groups with respect to the covariates. The wgtmed function selects the opti-
mal number of GBM iterations to minimize the differences between exposure groups as
measured by the rules of the given ps_stop.method object. The package includes four
built-in ps_stop.method objects: es.mean, es.max, ks.mean, and ks.max. The default is
c("ks.mean", "ks.max"). Please refer to the twang documentation for further details.

ps_n.trees, ps_interaction.depth, ps_shrinkage These are parameters for the GBMs that
wgtmed fits and stores when estimating the cross-world weights. The argument ps_n.trees
specifies the maximum number of GBM iterations; the default is 10000. The ps_shrinkage
argument controls the amount of shrinkage used for smoothing in the GBM algorithm.
This argument must be a numeric value between 0 and 1 (denoting the learning rate); the
default is 0.01. Small values such as 0.005 or 0.001 yield smooth fits but require greater
values of ps_n.trees to achieve adequate fits. Computational time increases inversely with
small values of the ps_shrinkage argument. wgtmed will issue a warning if the estimated
optimal number of iterations is too close to the maximum number of GBM iterations,
as this indicates that balance may improve if more complex models are considered — the
user should increase ps_n.trees or increase ps_shrinkage if this warning appears. The
argument ps_interaction.depth controls the level of interactions allowed in the GBMs;
the default is 3.

ps_n.keep A numeric variable indicating the algorithm should only consider every ps_n.keep-th
iteration of the propensity score model and optimize balance over this set instead of all
iterations. Default: 1.

ps_version Specifies whether GBM is implemented using the R package gbm or the R package
xgboost; the default is gbm.

ps_verbose This argument controls the amount of information printed to the console and is set
to FALSE by default.

sampw Allows the user to specify sampling weights and is set to NULL by default.

There are several other more advanced arguments that are directly passed to the ps func-
tion including ps_perm.test.iters, ps_bag.fraction, ps_minobsinnode, ps_ks.exact, and
ps_n.grid that are described in the main twang tutorial. All these arguments are optional and
have specified defaults, which we have not changed in this example.

5.3 Assessing balance diagnostics

The wgtmed function returns a mediation object. The analyst should perform several diagnostic
checks before interpreting the estimated mediation effects.
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5.3.1 Diagnostic plots

GBM convergence plot: The first of these diagnostic plots assesses model convergence to
make sure that the specified value of ps_n.trees allowed GBM to sufficiently explore complex
models. The convergence plot is returned as the default of the plot() function or may be
requested by specifying plot="optimize". This convergence plot graphs the specified stopping
criteria measure as a function of the number of iterations in the GBM algorithm, with higher
iterations corresponding to more complex models. Note that this plot type is not available if
method=logistic or method=crossval.

Three figures are displayed: (1) Model A, used for estimating the IPW term in Equation
(2) Model MO, used for estimating the odds weight term in Equation [7| for the NIFE; and
NDEy decomposition, and (3) Model M1, used for estimating the odds weight term in Equation
[7] for the NIE; and NDE; decomposition. Adequate convergence should be achieved for all
relevant models. If it appears that additional iterations would likely result in lower values of the
balance statistic, ps_n.trees should be increased. However, after a point, additional complexity
typically makes covariate balance worse. Note that the model_subset option can be used to
display convergence plots for Model A, Model MO, or Model M1 individually.

If more than one stopping rule is specified in the wgtmed function, this figure will have multiple
columus, corresponding to each stopping rule (unless the user specifies subset (e.g., subset=1
will only print plots for the first stopping rule)). This can be used to determine how comparable
two or more stopping rules are: if the minima for multiple stopping rules under consideration
are near one another, the results should not be sensitive to which stopping rule is used for the
final analysis.

> plot(cig_med)
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We are primarily interested in the NTE; and NDE, decomposition, (i.e., Equation 7 SO
we focus our interpretations on the plots labeled Model A and Model M0. As shown in the
convergence plot above, we achieve good convergence for both Model A and Model MO, as the
balance measures asymptotically approach 0 as the number of iterations increases.
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Propensity score boxplots: The next plot produces boxplots illustrating the spread of the
estimated propensity scores in the exposure and comparison groups for Model A, Model M0, and
Model M1. If more than one stopping rule is specified in the wgtmed function, this figure will
have multiple columns, corresponding to each stopping rule.

> plot(cig_med, plot = "boxplot")
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Propensity scores

As shown in the boxplot above, we see that we have adequate overlap in the propensity score
values between the two exposure groups for Model A, Model M0, and Model M1.

Absolute standardized mean difference plots: The next plot illustrates the magnitude of
the difference in covariate means across exposure groups, both before and after weighting. These
magnitudes are reported using the absolute standardized mean difference (ASMD). In these
plots, a blue line denotes a reduction in ASMD after weighting, whereas a red line denotes an
increase. Closed red circles indicate a statistically significant difference in ASMD across groups.
Ideally, the ASMD after weighting is less than 0.10 for all covariates.

> plot(cig_med, plot = "asmd")
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As shown in the plot above, we see that we have sizable ASMD values in the unweighted data.
However, weighting has notably decreased these covariate imbalances across exposure groups, as
all ASMD values are well under 0.1 after weighting.

Mediator density plots: The plot="density" argument generates two figures assessing the
distribution of the mediator variable in the context of NIFE; and NIEj, respectively. If the
mediator is binary, then the plot is a bar chart; if mediator is continuous, the plot is a density
curve. The plot is interactive: users must hit the return key to see the next plot. The analyst
should review the plot(s) corresponding to the NIE estimate(s) of interest.

Recall that NI F; is defined as F (Y(1 My — Y, MO)), hence it is defined among individuals in
exposure group A = 1. Weighting is supposed to weight the distribution of mediator M; values
among the exposure group A = 1 sample, to match the distribution of the values of My for the
entire population to create the counterfactual distribution of Y(1 az.)-

The distribution of mediator values for the comparison group, the A = 0 sample, weighted by
the total effect weights estimates the distribution of Mj for the total population. Hence, the first
plot compares the distribution of mediator values for exposure group weighted by the cross-world
weights (the counterfactual distribution, denoted “counterfactual” in the plot) to the distribution
of mediator values for the comparison group sample weighted by the total effect weights (the
population distribution of My, denoted “population” in the plot). Ideally, the weighted mediator
variable distributions will be highly similar so that the counterfactual distribution and mean
of Y(1,a,) for the entire population is well-estimated by weighting the outcome of the exposure
group by the cross-world weights and weighting has achieved its goal for estimating NIE; and
NDEj.

Similarly, the NIEj is defined as FE (Y(O, ) — Yo, MO)), hence it is defined among individ-
uals in the comparison group A = 0. The second plot, which is for the NIFEy and NDE;
decomposition (i.e., Equation , compares the distribution of the mediator variable weighted
by the cross-world weights among the observed comparison group (denoted “counterfactual” in
the figure) to the distribution of the mediator variable weighted by the total effect weights in
the exposed group (denoted “population” in the figure). Again, ideally, the weighted mediator
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variable distributions will be highly similar so that the counterfactual distribution and mean of
Y(0,0,) for the entire population is well-estimated by weighting the outcome of the comparison
group by the cross-world weights and weighting has achieved its goal for estimating NIFy and
NDE;.

> plot(cig_med, plot = "density")

:1: Distribution of Mediator for Treatment Sample Weighted to Match
Distribution of Mediator under Control for the Population

population -
counterfactual

ciglhs
ks.mean

0.8

Proportion
o
N
|

0.2

0 1
Weighted Mediator

0.0

As shown in the density above, we see that weighted distributions for the population and
the counterfactual distributions are well-matched in the context of NIFE;. In users’ R console,
pressing the return key would replace the plot with the density in the context of NIFEy.

Weight histograms: Finally, histograms of the standardized weights for each stopping rule
can be obtained using the following code:

> plot(cig_med, plot = "weights")
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The plot allows an assessment of the weights (e.g., identifying very large weights). If the user
wishes to obtain the raw (not standardized) weights for further plotting, they can be obtained
as follows:

> w_00 <- attr(cig_med, 'w_00') #weight for estimating E[Y(0, M(0))]
> w_11 <- attr(cig_med, 'w_11') #weight for estimating E[Y(1, M(1))]
> w_10 <- attr(cig_med, 'w_10') #weight for estimating E[Y(1, M(0))]
> w_01 <- attr(cig_med, 'w_01') #weight for estimating E[Y(0, M(1))]

5.3.2 Balance Tables

The function bal.table.mediation() applied to the mediation object returned by wgtmed()
returns tables detailing covariate balance across exposure groups both before and after weighting.
Three balance tables are presented, one for Model A, the model for the IPW term of the cross-
world weights (denoted “balance_a”), and two for the odds weight (i.e., the first term) of the cross-
world weights (denoted “balance_m0” and “balance_m1”). Ideally, weighting improves covariate
balance across exposure groups and for the covariate and mediator balance after applying the
cross-world weights.

The first table, balance_a, shows the balance between exposure groups both in the un-
weighted data and using the second term, the IPW, of the cross-world weights, and is relevant
regardless of which total effect decomposition is of interest. This balance table is similar to the
covariate balance table provided when using the ps command in twang.

Which of the second and third balance tables is relevant depends on the estimands (i.e., total
effect decomposition) that the analyst wishes to use. We provide balance assessment for both
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decompositions. If you wish to report the NIFE; and NDE, estimands for the decomposition
in Equation [4 then you will want to examine the table denoted balance_m0. If you wish to
report the NTFEy and N DE; estimands for the decomposition in Equation [5] then you will want
to examine the table denoted balance_ml. For both tables, the weighted covariate summary

statistics are calculated using weights of the form £ ((‘Zz'zl‘lj\]\j:g’?:;)) (for NIE; and NDEy) or
5 ((::Z/HAJ{;:%,))((::?) (for NIEy and NDE;). Computationally, the wtgmed function estimates and

optimizes GBM twice, once for the NIE, (using the original 0/1 coding of the exposure variable)
and once for the NIE; (using reverse coding of the exposure variable), resulting in two balance
tables labeled balance_ml and balance_mO, respectively.

The balance tables for Model A, Model M0, and Model M1 are comprised of the following
columns:

tx.mn, ct.mn The mean for each covariate in the exposure group, tx.mn, and comparison
group, ct.mn. The unweighted rows, denoted by the prefix unw., show the unweighted
means. Weighted summaries are presented for each stopping rule selected; the prefix
corresponds to the specified stopping rule (e.g., ks.mean.).

tx.sd, ct.sd The standard deviation for each covariate in the exposure group, tx.sd, and com-
parison group, ct.sd.

std.eff.sz The standardized mean difference is defined as the exposure group mean minus the
comparison group mean divided by the comparison group standard deviation for the decom-
position in Equation [4] and the exposure group standard deviation for the decomposition
in Equation If the standard deviation is very small, the resulting standardized mean
difference will be very large; for readability, we set all standardized mean differences larger
than 500 to NA (missing values).

stat, p Depending on whether the covariate is continuous or categorical, stat is a t-statistic or
a x? statistic corresponding to a statistical test of means across exposure groups. p is the
associated p-value.

ks The Kolmogorov-Smirnov test statistic (testing for differences in the covariate distribution
across exposure groups).

The balance table results for our applied example are shown below. We first examine the
balance table for Model A. Prior to weighting, the two exposure groups differed significantly
with respect to all covariates. After weighting, all ASMDs were well below 0.10. Next, since the
NIE; and NDEj are the mediating effects of interest in our example, we examine the balance
table for Model M0. Again, we see significant differences between the two unweighted exposure
groups with respect to the mediator variable as well as all covariates. Weighting reduced these
differences across groups — all ASMDs were well below 0.10 after weighting.

> bal.table.mediation(cig_med)

stk ok ok sk o o sk o ok sk sk ok sk ok ok sk o sk ok sk sk sk sk ok sk sk sk sk s sk o ks sk sk sk e ok sk sk ok ko ok ok
Notes:

A. Model A estimates the probability of exposure given

the covariates specified in wgtmed. The results are used
by wgtmed to estimate E[Y(1,M(0))] and E[Y(O,M(1))].

They are not used to estimate the total effect.

B. Model MO is used for NDE_O and NIE_1 effects.

ct.sd is used for the denominator of std.eff.sz.

C. Model M1 is used for NDE_1 and NIE_O effects.

tx.sd is used for the denominator of std.eff.sz.

See the bal.table.mediation help file for more information.
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0.026
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0.044
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0.173
0.042
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0.230
0.108
-0.082
-0.242
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0.013
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0.001
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0.045
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0.044
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0.042
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NA
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NA
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NA
NA
NA
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NA
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-390.0563
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-5.673
NA
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NA

NA

NA
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NA
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NA
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NA
NA
NA
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NA
NA
NA

NA
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NA

NA

NA
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NA

NA

NA
0.000
NA

NA

NA

0.234 -116.806 0.000
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.019
.001
NA
NA
NA
.008
NA
NA

NA
NA
NA
0.000
NA
NA
NA
NA
0.697
0.869
NA
NA
NA
0.996
NA
NA
NA
0.721
NA
NA
NA
0.968
NA
NA
NA
0.958
NA
NA
NA
NA

pval
0.000
0.000
NA
NA
NA
0.001
NA
NA
NA
0.000
NA
NA

NA
0.000
NA
NA
NA
0.000
NA

NA
NA

NA
0.985
1.000
NA
NA
NA
0.999
NA
NA

OO OO OO0 O0ODODODODO0ODODODODODODODO0ODODO0ODOOOOOOOOO

OO OO0 O0ODO0OO0ODODO0OO0ODODO0ODO0DO0OO0ODODO0OO0OODOO0OODOOOOOOO

.050
.029
.114
.066
.023
.047
021
.017
.003
.006
.001
.003
.004
.002
.001
.001
.000
.006
.004
.004
.006
.002
.003
.001
.004
.006
.005
.000
.001
.000

.102
.236
.011
.142
.105
.021

015

.008
.013
.015
.073
.020
.108
.094
.050
.029
.114
.066
.023
.047

021
017

.000
.000
.000
.000
.000
.001
.000
.001



ks.mean.race:4 0.112 0.315 0.111 0.314 0.002 NA NA 0.001
ks.mean.educ:1  0.121 0.326 0.121 0.326 0.001 0.004 1.000 0.000
ks.mean.educ:2  0.297 0.457 0.297 0.457 0.001 NA NA 0.000
ks.mean.educ:3 0.383 0.486 0.384 0.486 -0.002 NA NA 0.001
ks.mean.educ:4 0.199 0.399 0.199 0.399 0.000 NA NA 0.000
ks.mean.income:1 0.295 0.456 0.295 0.456 0.000 0.001 1.000 0.000
ks.mean.income:2 0.351 0.477 0.351 0.477 0.000 NA NA 0.000
ks.mean.income:3 0.125 0.331 0.125 0.331 -0.001 NA NA 0.000
ks.mean.income:4 0.229 0.420 0.229 0.420 0.000 NA NA 0.000
ks.mean.employ:1 0.441 0.497 0.442 0.497 -0.002 0.005 1.000 0.001
ks.mean.employ:2 0.216 0.411 0.216 0.411 0.000 NA NA 0.000
ks.mean.employ:3 0.098 0.297 0.097 0.296 0.001 NA NA 0.000
ks.mean.employ:4 0.193 0.395 0.193 0.395 0.001 NA NA 0.000
ks.mean.employ:5 0.052 0.222 0.051 0.221 0.002 NA NA 0.000
$check_counterfactual_nie_1

cntfact.mn cntfact.sd target.mn target.sd std.eff.sz stat P ks
unw 0.269 0.444 0.167 0.373 0.267 14.234 0.000 0.102
ks.mean 0.168 0.374 0.166 0.372 0.006 0.333 0.739 0.002
$check_counterfactual_nie_O

cntfact.mn cntfact.sd target.mn target.sd std.eff.sz stat P
unw 0.167 0.373 0.269 0.444 -0.267 -14.234 0.000
ks.mean 0.274 0.446 0.279 0.449 -0.014 -0.555 0.579

ks

unw 0.102

ks.mean 0.005

The final two tables are discussed in the next section.

5.4 Interpreting the Effects

The summary () function provides a summary of all the important output from wgtmed including
the effect estimates, covariate balance, effective sample size (ESS), and distribution checks for
the mediator.

The ESS is reported because weighted means can have greater sampling variance than un-
weighted means from a sample of equal size. For example, the total effect and natural di-
rect and indirect effects estimates equal differences of pairs of estimates of the four population
means E (Yo ), £(Ya,0)), E(Y1,mp)), and E(Y(o,ar,)). Each population mean is estimated
as a weighted mean. The means E(Y( ar,)) and E(Y(; ar,)) use the appropriate total effect
weights and the counterfactual means E(Y{y, Mo)) and F (Y(O, My)) use the corresponding cross-
world weights. The variability of the weights will reduce the precision of the mean estimates and,
subsequently, the estimated total, direct, and indirect effects. Large variability of the weights
can also signal outliers where a small number of observations have very large weight relative to
the average. The ESS is approximately the number of observations from a simple random sample
that yields an estimate with sampling variation equal to the sampling variation obtained with
the weighted comparison observations. It is an intuitive way to present the variability in the
weights. Small values relative to the actual sample size indicate large variability in the weights,
potential outliers, and possible low precision in the estimated mean and effect. This could signal
the need to review data for the application. For each of the means:

2
(ZiEC wl)
5 (11)
2icc Wi
where C is the set of indices for participants in the group used to estimate the mean, the expo-
sure group for E(Y(y ar,)) and E(Y(1,a,)) or the comparison group for E(Y{ ) and E(Y(O,M1)>[|

ESS =

IThe ESS is an accurate measure of the relative size of the variance of means when the weights are fixed or
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The ESS for the four population means are presented in the table output of the summary
function. The output also includes the ESS for the odds weights and IPW weights used in
calculating the cross-world weights. These ESSs are provided to help analysts diagnosis the
variability in the odds weight and IPW components to indicate the sources of variability in the
cross-world weights and support model evaluation.

> summary (cig_med)

95%, Confidence Intervals for Effect Estimates: ks.mean_effects

effect std.err ci.min ci.max

TE 0.123 0.009 0.106 0.141
NDE_O 0.098 0.009 0.080 0.115
NIE_1 0.026 0.003 0.020 0.032
NDE_1 0.094 0.009 0.076 0.112
NIE_O 0.029 0.001 0.027 0.031

ESS for Total Effect and Cross-World Weights for estimating four population means used
to estimate the total effect and the natural direct and indirect effects

E[Y(0, M(0))] E[Y(1, M(1))]1 ELY(1, M(0))] ELY(0, M(1))]
Sample Size 36163.00 4130.000 4130.000 36163.00
ks.mean 35981.46 2619.518 2519.793 32110.12

Balance Summary Tables: model_a
Note: Model A is used for all effects: NDE_O, NDE_1, NIE_O, and NIE_1.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p

unw 4130 36163 4130.000 36163.00 0.497 0.143 0.236 NA

ks.mean 4130 36163 2619.518 35981.46 0.016 0.006 0.006 NA
mean.ks iter

unw 0.059 NA

ks.mean 0.002 5722

Balance Summary Tables: model_mO
Note: Model MO is used for NDE_O and NIE_1 effects.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p

unw 4130 36163 4130.000 36163 0.506 0.149 0.236 NA

ks.mean 4130 36163 2317.675 36163 0.021 0.007 0.006 NA
mean.ks iter

unw 0.060 NA

ks.mean 0.003 5488

Balance Summary Tables: model_ml
Note: Model M1 is used for NDE_1 and NIE_O effects.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p

unw 4130 36163 4130 36163.00 0.569 0.159 0.236 NA

ks.mean 4130 36163 4130 21529.22 0.002 0.001 0.001 NA
mean.ks iter

unw 0.06 NA

ks.mean 0.00 5298

Mediator Distribution Check: check_counterfactual_nie_1

they are uncorrelated with outcomes. Otherwise the ESS is an underestimate (Little & Vartivarian, 2004). With
propensity score weights, it is rare that weights are uncorrelated with outcomes. Hence, the ESS typically gives
a lower bound, but it still serves as a useful measure for describing the variability of the weights and assessing
the overall quality of a model, even if it provides a possibly conservative picture of the loss in precision due to
weighting.
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cntfact.mn cntfact.sd target.mn target.sd std.eff.sz stat P ks
unw 0.269 0.444 0.167 0.373 0.267 14.234 0.000 0.102
ks.mean 0.168 0.374 0.166 0.372 0.006 0.333 0.739 0.002

Mediator Distribution Check: check_counterfactual_nie_O

cntfact.mn cntfact.sd target.mn target.sd std.eff.sz stat P
unw 0.167 0.373 0.269 0.444 -0.267 -14.234 0.000
ks.mean 0.274 0.446 0.279 0.449 -0.014 -0.555 0.579
ks
unw 0.102

ks.mean 0.005

The first table reports the total effect (TE), as well as the natural (in)direct effects for
both decompositions, NDFEy, NIE; and NDE;, NIEy, and their corresponding 95% confidence
intervals in the table labeled 95 Confidence Intervals for Effect Estimates. An NIFE
confidence interval that does not contain 0 indicates a statistically significant mediation effect
at the 0.05 level.

The next several tables are Balance Summary Tables, which offer a compact summary of
sample sizes and balance measures for Model A, Model M0, and Model M1. The Balance
Summary Tables are comprised of the following columns:

n.treat, n.ctrl The observed sample size in the exposure and comparison groups, respectively.

ess.treat, ess.ctrl The ESS after weighting for the exposure and comparison groups, respec-
tively.

max.es, mean.es, max.ks, mean.ks Reports the maximum standardized mean difference,
the mean standardized mean difference, the maximum KS statistic, and the mean KS
statistic across all of the covariates, respectively. The last column, iter, gives the itera-
tion number for each of the stop methods. This is not applicable to the unweighted model
and thus, is given a value of NA.

The final two tables, labeled Mediator Distribution Check, have different columns. Which
of these two tables is relevant again depends on the decomposition that the analyst is interested
in. If the analyst is interested in the NIFE; and NDE, estimands obtained from the decom-
position in Equation [4] then the table labeled check_counterfactual_nie_1 is relevant. If
the analyst is interested in the NIFEy and NDE; estimands obtained from the decomposition
in Equation [5| then the table labeled check_counterfactual_nie_0 is relevant. These tables
show how well the cross-world weights achieve their goal of weighting the observed mediator (for
one level of exposure, e.g., A = 1, M7) to match the population of the potential mediator for
the other exposure level (e.g., My), by checking that the cross-world-weighted mean and stan-
dard deviation of one sample (e.g., exposed) match the total-effect-weighted mean and standard
deviation of the other sample (e.g., control).

The Mediator Distribution Check tables are comprised of the following columns:

cntfact.mn Mean of the mediator under the counterfactual condition. For NIFE;, this is the
estimate of the (counterfactual) mean of the mediator under the comparison condition
(E(M(0))) estimated from the exposure group — the cross-world-weighted mean for the
exposure group. For N1Ej, this is the estimate of the (counterfactual) mean of the mediator
under the exposure condition (E(M(1))) estimated from the comparison group — the cross-
world-weighted mean for the comparison group.
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target.mn Mean of the mediator under the observed condition. For NIFEj, this is the mean
of the mediator under the comparison condition estimated from the comparison group —
the total effects weighted mean for the comparison group. For NIEj, this is the mean of
the mediator under the exposure condition estimated from the exposure group — the total
effects weighted mean for the exposure group.

cntfact.sd, target.sd The weighted estimates of the standard deviations of the mediator dis-
tributions under the counterfactual and target (i.e., observed) groups.

std.eff.sz Standardized mean difference, which is now calculated between the counterfactual
and target (i.e., observed) groups.

stat, p, ks Similarly, stat and ks now refer to statistical tests across counterfactual and target
(i.e., observed) groups.

We will now interpret the TE as well as the the decomposition of interest, NDFy and NIFj,
in the table labeled 95% Confidence Intervals for Effect Estimates for our case study.
The TE represents the total effect of LGB sexual identity on adult smoking status among women.
As this is positive and statistically significant, LGB women are significantly more likely than
heterosexual women to be current smokers. LGB women are estimated to be 12.4 percentage
points more likely to report current smoking than heterosexual woman. The NDE_O is the nat-
ural direct effect of LGB status on smoking, holding early smoking initiation status constant
to what it would be if a woman was heterosexual, A = 0. The NDZEj is positive and statisti-
cally significant, indicating that LGB status is associated with smoking in adulthood, through
mechanisms independent of early smoking initiation. The NIE_1 is the natural indirect effect of
early smoking initiation on adult smoking, holding LGB sexual identity (A = 1) constant. The
NIE; is positive and statistically significant, indicating that indeed, LGB status is related to
elevated smoking during adulthood through greater likelihood of early smoking initiation, which
is positively associated with adult smoking. We note that, as expected, the NDE_0 and NIE_1
sum to the TE and roughly 21% of the total effect is through the mediator of early smoking
initiation.

5.5 [Estimating joint mediation effect of multiple mediators

Finally, we highlight that the wgtmed package can accept multiple mediators. When multiple
mediators are included, the NIE and N DF estimands are calculated to reflect mediation jointly
through all mediators (VanderWeele & Vansteelandt, 2014), rather than separate path-specific
mediation effects (e.g., Daniel et al., 2015). The example below is an extension of our prior
LGB disparities analysis examining mediation effects of early smoking initiation on current (i.e.,
adult) smoking status. In the example below, we consider an additional mediator, early alcohol
initiation alc15, in addition to early smoking initiation cigl5. The outcome is an indicator for
whether an individual meets criteria for either alcohol or nicotine dependence alc_cig_depend.
To specify multiple mediators, include them on the left-hand side of the formula.med separated
by u+a7

> TEps <- ps(lgb_flag ~ age + race + educ + income + employ,

+ data=NSDUH_female, verbose=F, n.trees=6000, n.keep=5, estimand="ATE")

> cig_alc_med <- wgtmed(cigl5 + alcl5 ~ age + race + educ + income + employ,

+ a_treatment="1gb_flag",

+ y_outcome="alc_cig_depend",

+ data=NSDUH_female,

+ method="ps",

+ total_effect_ps=TEps,

+ total_effect_stop_rule="ks.mean",
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ps_version="gbm",
ps_n.trees=6000,
ps_n.keep = 5,
ps_stop.method="ks.mean")

+ 4+ o+ +

> summary(cig_alc_med)

95% Confidence Intervals for Effect Estimates: ks.mean_effects

effect std.err ci.min ci.max
TE 0.084 0.008 0.068 0.099
NDE_O 0.059 0.008 0.044 0.074
NIE_1 0.025 0.003 0.018 0.032
NDE_1 0.056 0.008 0.041 0.072
NIE_O 0.027 0.001 0.025 0.030

ESS for Total Effect and Cross-World Weights for estimating four population means used
to estimate the total effect and the natural direct and indirect effects

E[Y(0, M(0))] EL[Y(1, M(1))]1 E[Y(1, M(0))] ELY(0, M(1))]
36163.00 4130.000 4130.00 36163.00
35981.47 2619.652 2396.31 29702.21

Sample Size
ks.mean

Balance Summary Tables: model_a
Note: Model A is used for all effects: NDE_O, NDE_1, NIE_O, and NIE_1.

n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p
unw 4130 36163 4130.000 36163.00 0.497 0.143 0.236 NA
ks.mean 4130 36163 2619.518 35981.46 0.016 0.006 0.006 NA
mean.ks iter
unw 0.059 NA
ks.mean 0.002 5722
Balance Summary Tables: model_mO

Note: Model MO is used for NDE_O and NIE_1 effects.
n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p
unw 4130 36163 4130.000 36163 0.506 0.156 0.236 NA
ks.mean 4130 36163 2200.838 36163 0.021 0.008 0.007 NA
mean.ks iter
unw 0.063 NA
ks.mean 0.003 6000
Balance Summary Tables: model_ml

Note: Model M1 is used for NDE_1 and NIE_O effects.
n.treat n.ctrl ess.treat ess.ctrl max.es mean.es max.ks max.ks.p
unw 4130 36163 4130 36163.00 0.569 0.163 0.236 NA
ks.mean 4130 36163 4130 20880.03 0.002 0.001 0.001 NA
mean.ks iter
unw 0.063 NA
ks.mean 0.000 4208

Mediator Distribution Check: check_counterfactual_nie_1

cntfact.mn cntfact.sd target.mn target.sd std.eff.sz  stat P
unw.ciglh 0.269 0.444 0.167 0.373 0.267 14.234 0.000
unw.alc1b 0.256 0.436 0.144 0.351 0.309 15.892 0.000
ks.mean.ciglb 0.165 0.371 0.166 0.372 -0.004 -0.233 0.816
ks.mean.alclb 0.147 0.354 0.144 0.351 0.008 0.513 0.608
ks
unw.ciglb 0.102
unw.alc1b 0.112
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ks.mean.cigl5 0.002
ks.mean.alc15 0.003

Mediator Distribution Check: check_counterfactual_nie_O

cntfact.mn cntfact.sd target.mn target.sd std.eff.sz stat

unw.ciglb 0.167 0.373 0.269 0.444 -0.267 -14.234

unw.alclb 0.144 0.351 0.256 0.436 -0.309 -15.892

ks.mean.ciglb 0.274 0.446 0.279 0.449 -0.015 -0.597

ks.mean.alclb 0.263 0.440 0.270 0.444 -0.020 -0.784
P ks

unw.ciglb 0.000 0.102

unw.alclb 0.000 0.112

ks.mean.cigl5 0.551 0.006
ks.mean.alc15 0.433 0.007

6 About this Tutorial

This tutorial was supported by funding from grant 1R01DA034065 from the National Institute
on Drug Abuse. The overarching goal of the grant is to develop statistical methods and tools
that will provide addiction health services researchers and others with the tools and training they
need to study the effectiveness of treatments using observational data. The work is an extension
of the Toolkit for Weighting and Analysis of Nonequivalent Groups, or TWANG, which contains
a set of functions to support causal modeling of observational data through the estimation and
evaluation of propensity score weights. The TWANG package was first developed in 2004 by
RAND researchers for the R statistical computing language and environment and has since been
expanded to include tools for SAS, Stata, and Shiny. For more information about TWANG and
other causal tools being developed, see www.rand.org/statistics/twang,

RAND Social and Economic Well-Being is a division of the RAND Corporation that seeks to
actively improve the health and social and economic well-being of populations and communities
throughout the world. This research was conducted in the Social and Behavioral Policy Program
within RAND Social and Economic Well-Being. The program focuses on such topics as risk
factors and prevention programs, social safety net programs and other social supports, poverty,
aging, disability, child and youth health and well-being, and quality of life, as well as other policy
concerns that are influenced by social and behavioral actions and systems that affect well-being.
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