Gambit v4.9.4

A portable implementation of Scheme
Edition v4.9.4, January 02, 2022

Marc Feeley

Copyright (©) 1994-2022 Marc Feeley.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: The Gambit system 1

1 The Gambit system

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS, R5RS, R7RS and IEEE Scheme standards. It consists of two main
programs: gsi, the Gambit Scheme interpreter, and gsc, the Gambit Scheme compiler.

The Gambit Scheme compiler translates Scheme code to another target language, cur-
rently C or JavaScript. The C target is the most mature and it offers portability and fast
execution. The JavaScript target allows writing web apps in Scheme.

Most of the Gambit system, including the interpreter and compiler, is written in Scheme
and compiled to portable C code using the compiler. The high portability of the generated C
code allows the interpreter, compiler and user programs to be easily compiled and executed
on any platform for which a C compiler is available. With appropriate declarations in the
source code the compiled Scheme programs run roughly as fast as equivalent C programs.

For the most up to date information on Gambit and related resources please visit the
Gambit web page at https://gambitscheme.org. Issues should be reported on the
github source code repository https://github.com/gambit/gambit.

1.1 Accessing the system files

Files related to Gambit, such as executables, libraries and header files, are stored in multiple
Gambit installation directories. Gambit may be installed on a system according to two
different installation models.

In the first model there is a single directory where all the Gambit installation direc-
tories are stored. This central installation directory is typically /usr/local/Gambit
under UNIX, /Library/Gambit under macOS and C:/Program Files/Gambit un-
der Microsoft Windows. This may have been overridden when the system was built with
the command ‘configure ——prefix=/my/Gambit’. If the system was built with the
command ‘configure ——enable-multiple-versions’ then the central installation
directory is prefiz /version, where version is the system version string (e.g. v4.9.4 for
Gambit v4.9.4). Moreover, prefiz/current will be a symbolic link which points to the
central installation directory. In this model, the Gambit installation directory named X is
simply the subdirectory X of the central installation directory.

In the second model some or all of the Gambit installation directories are stored
in installation specific directories. The location of these directories is assigned
when the system is built using the command ‘configure ——bindir=/my/bin
——includedir=/my/include ——-libdir=/my/1lib’.

The advantage of the first model is that it is easy to have multiple versions of Gambit
coexist and to remove all the files of a given version. However, the second model may be
necessary to conform to the package installation conventions of some operating systems.

Executable programs such as the interpreter gsi and compiler gsc can be found in the
bin installation directory. Adding this directory to the PATH environment variable allows
these programs to be started by simply entering their name. This is done automatically by
the macOS and Microsoft Windows installers.

The runtime library is located in the 1ib installation directory. =~ When the
system’s runtime library is built as a shared-library (with the command ‘configure

https://gambitscheme.org
https://github.com/gambit/gambit

Chapter 1: The Gambit system 2

—-—enable-shared’) all programs built with Gambit, including the interpreter and
compiler, need to find this library when they are executed and consequently this directory
must be in the path searched by the system for shared-libraries. This path is normally
specified through an environment variable which is LD_LIBRARY_PATH on most versions
of UNIX, LIBPATH on AIX, SHLIB_PATH on HPUX, DYLD_LIBRARY_PATH on macOS,
and PATH on Microsoft Windows. If the shell is sh, the setting of the path can be made
for a single execution by prefixing the program name with the environment variable
assignment, as in:
$ LD_LIBRARY PATH=/usr/local/Gambit/lib gsi

A similar problem exists with the Gambit header file gambit . h, located in the include
installation directory. This header file is needed for compiling Scheme programs with the
Gambit compiler. When the C compiler is being called explicitly it may be necessary to
use a —I<dir> command line option to indicate where to find header files and a —-L<dir>
command line option to indicate where to find libraries.

Access to both of these files can be simplified by creating a link to them in the appropriate

system directories (special privileges may however be required):
$ 1ln -s /usr/local/Gambit/lib/libgambit.a /usr/lib # name may vary
$ 1n -s /usr/local/Gambit/include/gambit.h /usr/include

Alternatively these files can be copied or linked in the directory where the C compiler is
invoked (this requires no special privileges).

Another approach is to set some environment variables which are used to tell the C
compiler where to find header files and libraries. For example, the following settings can be
used for the gcc C compiler:

$ export LIBRARY PATH=/usr/local/Gambit/lib
$ export CPATH=/usr/local/Gambit/include

Note that this may have been done by the installation process. In particular, the macOS
and Microsoft Windows prebuilt installers set up the environment so that the gcc compiler
finds these files automatically.

Chapter 2: The Gambit Scheme interpreter 3

2 The Gambit Scheme interpreter

Synopsis:
gsi [-:runtimeoption, ..] [-i] [-f] [~h] [~help]| [-V]
[[-] [-e expressions| [-install] [~uninstall] [~update]
[search-directory-or-module-or-file]| . . .

The interpreter is executed in batch mode when the command line contains a module
or file or a ‘-7, or ‘—e’ option. The interpreter is executed in module management mode
when the command line contains the ‘—install’, ‘“—uninstall’, or ‘—update’ option.
Otherwise the interpreter is executed in interactive mode. The ‘—i’ option is ignored by
the interpreter. The initialization file will be examined unless the ‘—£’ option is present (see
Section 2.4 [GSI customization], page 5). The ‘~h’ and ‘~help’ options print brief usage
information on standard output and exit. The ‘—v’ option prints the system version string,
system time stamp, operating system type, and configure script options on standard output
and exits. Runtime options are explained in Chapter 4 [Runtime options|, page 27.

3 3

2.1 Interactive mode

In interactive mode a read-eval-print loop (REPL) is started for the user to interact with
the interpreter. At each iteration of this loop the interpreter displays a prompt, reads
a command and executes it. The commands can be expressions to evaluate (the typical
case) or special commands related to debugging, for example ‘, g’ to terminate the process
(for a complete list of commands see Chapter 5 [Debugging], page 32 or use the ‘, help’
command). Most commands produce some output, such as the value or error message
resulting from an evaluation.

The input and output of the interaction is done on the interaction channel. The in-
teraction channel can be specified through the runtime options but if none is specified the
system uses a reasonable default that depends on the system’s configuration. Typically the
program’s standard input and output are used as the interaction channel. When using the
runtime option ‘-:debug=c’, the interaction channel is the user’s console, also known as
the controlling terminal in the UNIX world.

When the REPL starts, the ports associated with (current-input-port)’,
‘(current-output-port)’ and ‘ (current-error-port)’ all refer to the interaction
channel.

Expressions are evaluated in the global interaction environment. The interpreter adds
to this environment any definition entered using the define and define-macro special
forms. Once the evaluation of an expression is completed, the value or values resulting from
the evaluation are output to the interaction channel by the pretty printer. The special void
object is not output. This object is returned by most procedures and special forms which
are defined as returning an unspecified value (e.g. write, set!, define).

Here is a sample interaction with gsi:

$ gsi
Gambit v4.9.4

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (map fact (1 2 3 4 5 6))
(1 2 6 24 120 720)

Chapter 2: The Gambit Scheme interpreter 4

> (values (fact 10) (fact 40))

3628800

815915283247897734345611269596115894272000000000

> 9

What happens when errors occur is explained in Chapter 5 [Debugging], page 32.

2.2 Batch mode

In batch mode the command line arguments denote modules and files to execute, REPL
interactions to start (‘-’ option), and expressions to be evaluated (‘-—e’ option). Those
options can be interspersed with the search directories, modules, and files on the command
line and can occur multiple times.

In addition to these options the command line may contain 3 types of non-options: search
directories, modules, and files.

Search directories Search directories are locations in the file system that are searched

Modules

Files

to resolve references to modules. Any command line argument that
ends with a path separator or a ‘.’ is treated as a search directory.
By default the module search order is initially "~ 1ib (which contains
builtin modules) followed by ~~“userlib (which contains user installed
modules and is typically the directory .gambit_userlib in the user’s
home directory). Search directories on the command line are added to
the front of the search order, and thus take precedence over the default
module search order.

Modules are either unversioned or versioned (managed by the git
version-control system). There are two flavors of versioned modules:
hosted modules have a git repository on a network accessible reposi-
tory manager site such as github.com and gitlab.com, and local
modules have a git repository on the local file system. Module names
have a syntax similar to the paths used to identify files. They consist
of one or more non-empty parts separated by ‘/’. The last part may
end with a suffix of the form @version. Only the first part and version
may contain ‘.’, otherwise only the characters a-z, A-Z, 0-9, ‘=’, and
‘7 are permitted. If there are at least 3 parts and the first part con-
tains at least one ‘.” and no ‘_’, then it refers to a hosted module (1st
part = host, 2nd part = account, 3rd part = repository name). For
example github.com/gambit/hello@1.0 is a hosted module refer-
ence. Otherwise it refers to a local versioned module or an unversioned

module, for example foobar or A/B/C/D.

(o

Files are simple code containers located on the local file system. They
are also identified by a path. If a path is a valid module or file, it
is interpreted as a module. Note that a path with a last component
containing an extension, such as ‘. scm’, and no @, is always interpreted
as a file.

The interpreter processes the command line arguments from left to right. Search di-
rectories are added to the head of the module search order. Files are executed using the
load procedure. Modules are requested using the ##demand-module special form (this

Chapter 2: The Gambit Scheme interpreter 5)

form is explained in Chapter 7 [Modules|, page 75, but essentially it causes that module
to be searched in the module search order and executed once). The ‘—e’ option uses the
eval procedure to evaluate expressions in the global interaction environment. After this
processing the interpreter exits.

The ports associated with ‘ (current-input-port)’, ‘ (current-output-port)’
and ‘(current-error-port)’ initially refer respectively to the standard input
(‘stdin’), standard output (‘stdout’) and the standard error (‘stderr’) of the
interpreter. This is true even in REPLs started with the ‘=’ option. The usual interaction
channel is still used to read expressions and commands and to display results. This makes
it possible to use REPLs to debug programs which read the standard input and write to
the standard output, even when these have been redirected.

Here is a sample use of the interpreter in batch mode, under UNIX:
S cat h.scm
(display "hello") (newline)
S cat w.six
display ("world"); newline();
S gsi h.scm - w.six —-e " (pretty-print 1) (pretty-print 2)"
hello
> (define (display x) (write (reverse (string->list x))))
> ,c
(#\d #\1 #\r #\o #\w)
1
2
$gsi . hw # add . to search order to load modules h and w
hello
world

2.3 Module management mode

Package management operations are executed using the command line options ‘-install’,
‘—~uninstall’, and ‘—update’ which respectively install, uninstall and update packages.
Package installation is explained in detail in Chapter 7 [Modules], page 75, but here are a
few examples:

$ gsi —-install github.com/gambit/hello

installing github.com/gambit/hello to /Users/feeley/.gambit_userlib/

$ gsi github.com/gambit/hello@1.0

hello world!

$ gsi -uninstall github.com/gambit/hello

uninstalling github.com/gambit/hello from /Users/feeley/.gambit_userlib/

2.4 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries
to execute a ‘ (load "~ "1lib/gambext")’ (for an explanation of how file names are in-
terpreted see Chapter 13 [Host environment|, page 169). An error is not signaled when the
file does not exist. Interpreter extensions and patches that are meant to apply to all users
and all modes should go in that file.

Extensions which are meant to apply to a single user or to a specific working directory
are best placed in the initialization file, which is a file containing Scheme code. In all modes,
the interpreter first tries to locate the initialization file by searching the following locations:
‘.gambini’and ‘" /.gambini’ (with no extension, a ‘. s1d’ extension, a ‘. scm’ extension,

Chapter 2: The Gambit Scheme interpreter 6

and a ‘. six’ extension in that order). The first file that is found is examined as though the
expression (include initialization-file) had been entered at the read-eval-print
loop where initialization-file is the file that was found. Note that by using an include
the macros defined in the initialization file will be visible from the read-eval-print loop (this
would not have been the case if 1oad had been used). The initialization file is not searched
for or examined when the ‘—f’ option is specified.

2.5 Process exit status

The status is zero when the interpreter exits normally and is nonzero when the interpreter
exits due to an error. Here is the meaning of the exit statuses:

0 The execution of the primordial thread (i.e. the main thread) did not
encounter any error. It is however possible that other threads termi-
nated abnormally (by default threads other than the primordial thread
terminate silently when they raise an exception that is not handled).

64 The runtime options or the environment variable ‘GAMBOPT’ contained
a syntax error or were invalid.

70 This normally indicates that an exception was raised in the primordial
thread and the exception was not handled.

71 There was a problem initializing the runtime system, for example insuf-
ficient memory to allocate critical tables.

For example, if the shell is sh:

$ gsi —-e " (pretty-print (expt 2 100))"
1267650600228229401496703205376

$ echo $7?
0
$ gsi —e " (pretty-print (expo 2 100))"
*** ERROR IN (string)@l.16 —-- Unbound variable: expo
S echo $?
70
$ gsi —-:debug=0 -e " (pretty-print (expo 2 100))"
S echo $?
70
$ gsi —:debug=0,unknown # try to use an unknown runtime option
$ echo $?
64
$ gsi —-:debug=0 nonexistent.scm # try to load a file that does not exist
$ echo $?
70
$ gsi nonexistent.scm
*** ERROR IN ##load-module-or-file —- No such file or directory
(load "nonexistent.scm")
$ echo $?
70
Note the use of the runtime option ‘-:debug=0’ that prevents error messages from

being output.

Chapter 2: The Gambit Scheme interpreter 7

2.6 Scheme scripts

The 1oad procedure treats specially files that begin with the two characters ‘4!’ and ‘@; .
Such files are called script files and the first line is called the script line. In addition to
indicating that the file is a script, the script line provides information about the source code
language to be used by the load procedure. After the two characters ‘4!’ and ‘@;’ the
system will search for the first substring matching one of the following language specifying
tokens:

scheme-rirs R4RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-r5rs R5RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-ieee-1178-1990
IEEE 1178-1990 language with prefix syntax, case-insensitivity, keyword
syntax not supported

scheme-srfi-0 R5RS language with prefix syntax and SRFI 0 support (i.e. cond-
expand special form), case-insensitivity, keyword syntax not supported

gsi-script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

gsc—script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

six—-script Full Gambit Scheme language with infix syntax, case-sensitivity, key-
word syntax supported

If a language specifying token is not found, load will use the same language as a
nonscript file (i.e. it uses the file extension and runtime system options to determine the
language).

After processing the script line, 1oad will parse the rest of the file (using the syntax of
the language indicated) and then execute it. When the file is being loaded because it is an
argument on the interpreter’s command line, the interpreter will:

e Setup the command-1ine procedure so that it returns a list containing the expanded
file name of the script file and the arguments following the script file on the command
line. This is done before the script is executed. The expanded file name of the script
file can be used to determine the directory that contains the script (i.e. (path-
directory (car (command-line)))).

e After the script is loaded the procedure main is called with the command line argu-
ments. The way this is done depends on the language specifying token. For scheme—
rdrs, scheme-r5rs, scheme-ieee-1178-1990, and scheme-srfi-0, themain
procedure is called with the equivalent of (main (cdr (command-line))) and
main is expected to return a process exit status code in the range 0 to 255. This con-
forms to the “Running Scheme Scripts on Unix SRFI” (SRFI 22). For gsi-script
and six—-script the main procedure is called with the equivalent of (apply main
(cdr (command-line))) and the process exit status code is 0 (main’s result is
ignored). The Gambit system has a predefined main procedure which accepts any

Chapter 2: The Gambit Scheme interpreter 8

number of arguments and returns 0, so it is perfectly valid for a script to not define
main and to do all its processing with top-level expressions (examples are given in the
next section).

e When main returns, the interpreter exits. The command line arguments after a script
file are consequently not processed (however they do appear in the list returned by the
command-1ine procedure, after the script file’s expanded file name, so it is up to the
script to process them).

2.6.1 Scripts under UNIX and macOS

Under UNIX and macOS, the Gambit installation process creates the executable ‘gsi’
and also the executables ‘six’, ‘gsi-script’, ‘six-script’, ‘scheme-r5rs’,
‘scheme—-srfi-0’, etc as links to ‘gsi’. A Scheme script need only start with the name
of the desired Scheme language variant prefixed with ‘4!’ and the directory where the
Gambit executables are stored. This script should be made executable by setting the
execute permission bits (with a ‘chmod +x script’). Here is an example of a script
which lists on standard output the files in the current directory:
#!/usr/local/Gambit/bin/gsi-script
(for-each pretty-print (directory-files))
Here is another UNIX script, using the Scheme infix syntax extension, which takes a
single integer argument and prints on standard output the numbers from 1 to that integer:
#!/usr/local/Gambit/bin/six—-script

function main (n_str)

{
scmobj n = \string->number (n_str);
for (scmobj i=1; i<=n; i++)
\pretty-print (i) ;
}

For maximal portability it is a good idea to start scripts indirectly through the
‘/usr/bin/env’ program, so that the executable of the interpreter will be searched in
the user’s ‘PATH’. This is what SRFI 22 recommends. For example here is a script that
mimics the UNIX ‘cat’ utility for text files:

#!/usr/bin/env gsi-script

(define (display-file filename)
(display (call-with-input-file filename
(lambda (port)
(read-1line port #£f)))))

(for-each display-file (cdr (command-line)))

2.6.2 Scripts under Microsoft Windows

Under Microsoft Windows, the Gambit installation process creates the exe-
cutable ‘gsi.exe’ and ‘six.exe’ and also the batch files ‘gsi-script.bat’,
‘six-script.bat’, ‘scheme-r5rs.bat’, ‘scheme-srfi-0.bat’, etc which simply
invoke ‘gsi.exe’ with the same command line arguments. A Scheme script need only
start with the name of the desired Scheme language variant prefixed with ‘@;’. A UNIX
script can be converted to a Microsoft Windows script simply by changing the script line
and storing the script in a file whose name has a ‘.bat’ or ‘. cmd’ extension:

Chapter 2: The Gambit Scheme interpreter 9

@;gsi-script $7f0 &*
(display "files:\n")
(pretty-print (directory-files))
Note that Microsoft Windows always searches executables in the user’s ‘PATH’, so there
is no need for an indirection such as the UNIX ‘/usr/bin/env’. However the script line
must end with ‘$7£0 %$*’ to pass the expanded filename of the script and command line

arguments to the interpreter.

2.6.3 Compiling scripts

A script file can be compiled using the Gambit Scheme compiler (see Chapter 3 [GSC],
page 10) into a standalone executable. The script line will provide information to the
compiler on which language to use. The script line also provides information on which
runtime options to use when executing the compiled script. This is useful to set the default
runtime options of an executable program.

The compiled script will be executed similarly to an interpreted script (i.e. the list of
command line arguments returned by the command—-1ine procedure and the invocation of
the main procedure).

For example:

$ cat square.scm
#!/usr/local/Gambit/bin/gsi-script -:debug=0
(define (main arqg)

(pretty-print (expt (string->number arg) 2)))

$ gsi square 30 # gst will load square.scm

900

$ gsc —-exe square # compile the script to a standalone program

$./square 30

900

$./square 1 2 3 # too many arguments to main

S echo $?

70

$./square —-:debug=1l 1 2 3 # ask for error message

*** ERROR IN f#f#start-main —— Wrong number of arguments passed to procedure

(main "1" "2" "3")

Chapter 3: The Gambit Scheme compiler 10

3 The Gambit Scheme compiler

Synopsis:

- :runtimeoption, . . | [-i] [-£] [-h] [~help] [-V]

target target]

prelude expressions| [-postlude expressions]

dynamic| [-exe| [-obj]

nb-gvm-regs n| [-nb-arg-regs n| [-compactness levell

cc compiler| [-cc-options options|

ld-options-prelude options| [-1ld-options options]
pkg-config pkg-config-args] [-pkg-config-path pkg-config-path]
warnings] [-verbose] [-report] [-expansion| [-gvm] [-cfg] [-dg]
debug] [-debug-location] [-debug-source]
debug-environments] [-track-scheme]

o output] [-c] [~keep-temp] [-link] [-flat] [-1 base]
module-ref module-ref] [-linker—name linker-name]

[-] [-e expressions] [-preload] [-nopreload]
[search-directory-or-module-or-file]| . . .

gsc

[
[
[
[
[
[
[
[
[
[
[
[
[
[

The ‘-h’ and ‘~help’ options print brief usage information on standard output and exit.
The ‘v’ option prints the system version string, system time stamp, operating system type,
and configure script options on standard output and exits.

The ‘-1’ option can be used to force gsc to process the command line like the interpreter.
The only difference with the interpreter is that the compilation related procedures listed in
this chapter are also available (i.e. compile-file, compile-file-to-target, etc).

3.1 Interactive mode

When no command line argument is present other than options gsc behaves like gsi in
interactive mode.

3.2 Customization

Like the interpreter, the compiler will examine the initialization file unless the ‘—f’ option

is specified. Runtime options are explained in Chapter 4 [Runtime options|, page 27.

3.3 Batch mode

In batch mode gsc accepts on the command line 3 types of non-options which are processed
from left to right: search directories, modules, and files. Search directories are added to the
list of module search order directories. Every command line argument that is the name of a
module that is found in the list of module search order directories will cause that module to
be compiled. Similarly, file names (with either no extension, or a C file extension, or some
other extension) on the command line will cause that file to be compiled. The compilation
is done for the target language specified with the —target target option. target is either
js, for JavaScript, or C, which is the default if no target language is specified.

¢) 3)

The recognized C file extensions are ‘.c’, ‘.C’, ‘.cc’, ‘.cp’, ‘.cpp’, *.CPP’, ‘.cxx’,

‘L4, fam’, CUM), and C.mm’.

Chapter 3: The Gambit Scheme compiler 11

The extension can be omitted from a file name when the Scheme file has a ‘. scm’, ‘. s1d’
or ‘.six’ extension. When the extension of the Scheme file is ‘. six’ the content of the
file will be parsed using the Scheme infix syntax extension (see Section 15.12 [Scheme infix
syntax extension|, page 235). Otherwise, gsc will parse the Scheme file using the normal
Scheme prefix syntax. Files with a C file extension must have been previously produced by
gsc with the C target and the ‘—c’ option, and are used by the C target Gambit linker.

For each Scheme file the compiler creates a file of target code, either ‘file.c’ or
‘file.js’ for the C and js targets respectively. The file’s name is the same as the Scheme
file, but the extension is changed to ‘.c’ or ‘. js’ as appropriate. By default the file is
created in the same directory as the Scheme file. This default can be overridden with the
compiler’s ‘—o’ option.

3

The files of target code produced by the compiler serve two purposes. They will be
processed by a C compiler or JavaScript VM, and they also contain information to be read
by Gambit’s linker to generate a link file. The link file is a file of target code that collects
various linking information for a group of modules, such as the set of all symbols and global
variables used by the modules. The linker is only invoked when the ‘-1ink’ or ‘—exe’
options appear on the command line.

Compiler options must be specified before the first file name and after the ‘—:’ runtime
option (see Chapter 4 [Runtime options], page 27). If present, the ‘-i’, ‘£’ and ‘-v’
compiler options must come first. The available options are:

-1 Force interpreter mode.

-f Do not examine the initialization file.

-h / -help Print brief usage information on standard output and exit.

-v Print the system version string, system time stamp, operating system

type, and configure script options on standard output and exit.

—target target
Select the target language.

-prelude expressions
Add expressions to the top of the source code being compiled.

-postlude expressions
Add expressions to the bottom of the source code being compiled.

-cc compiler Select specific C compiler.

—-cc-options options
Add options to the command that invokes the C compiler.

—-1ld-options—-prelude options
Add options to the command that invokes the C linker.

-1ld-options options
Add options to the command that invokes the C linker.

-pkg-config pkg-config-args

Use the pkg—config program to determine options for the C compiler
and C linker.

Chapter 3: The Gambit Scheme compiler 12

-pkg-config-path pkg-config-path
Add a path to the PKG_CONFIG_PATH environment variable.

-warnings Display warnings.

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

—expansion Display the source code after expansion.

—gvm Generate a listing of the GVM code.

-cfg Generate a control flow graph of the GVM code.

-dg Generate a dependency graph.

—debug Include all debugging information in the code generated.

—debug-location
Include source code location debugging information in the code gener-
ated.

—-debug-source Include the source code debugging information in the code generated.

—debug-environments
Include environment debugging information in the code generated.

-track—-scheme Generate ‘4#1ine’ directives referring back to the Scheme code.

-0 output Set name of output file or directory where output file(s) are written.

-dynamic Compile Scheme source files to dynamically loadable object files (this is
the default).

-exe Compile Scheme source files to an executable program (machine code
or script).

-obj Compile Scheme source files to object files by invoking the C compiler.

—keep-temp Keep any intermediate files that are generated.

-c Compile Scheme source files to target code without generating a link
file.

-link Compile Scheme source files to target code and generate a link file.

-flat Generate a flat link file instead of the default incremental link file.

-1 base Specify the link file of the base library to use for the link.

-module-ref module-ref
Specify the reference of the generated module.

—linker—-name Iinker—-name
Specify the name of the low-level initialization function exported by the
module.

-preload Turn on ‘preload’ linker bit.
-nopreload Turn off ‘preload’ linker bit. Start REPL interaction.

Chapter 3: The Gambit Scheme compiler 13

—-e expressions
Evaluate expressions in the interaction environment.

-nb-gvm-regs n
Specify the number of available Gambit virtual machine registers.

-nb-arg-regs n
Specify the number of procedure call parameters passed in Gambit vir-
tual machine registers.

—compactness level
Specify the compactness of the generated code.

The ‘—1i’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘—target’ option selects the target language of the compilation. It is either js for
JavaScript, or C for C (which is the default).

The ‘—prelude’ option adds the specified expressions to the top of the source code
being compiled. It can appear multiple times. The main use of this option is to supply
declarations on the command line. For example the following invocation of the compiler
will compile the file ‘bench.scm’ in unsafe mode:

$ gsc —-prelude " (declare (not safe))" bench.scm

The ‘—postlude’ option adds the specified expressions to the bottom of the source code
being compiled. It can appear multiple times. The main use of this option is to supply the
expression that will start the execution of the program. For example:

$ gsc —-postlude " (start-bench)" bench.scm

The ‘—cc’ option is only meaningful when the C target is selected. The ‘—cc’ option

selects the specified C compiler for compiling the generated C code. When this option is
used, the default C compiler options that were determined to be needed by the configure
script are nullified because they are very likely to be invalid for the specified C compiler. Any
options needed for this C compiler should be specified explicitly using the ‘—cc-options’,
‘~1ld-options-prelude’, and ‘~1d-options’ options. For example:

$ gsc —cc clang —-cc-options "-00 -bundle" bench.scm # clang on macOS

$ gsc —cc tcc —-cc-options -shared bench.scm # tee on linux

The ‘—cc-options’ option is only meaningful when the C target is selected and a

dynamically loadable object file is being generated (neither the ‘—c’ or ‘-~1ink’ options are
used). It can appear multiple times. The ‘~cc-options’ option adds the specified options
to the command that invokes the C compiler. The main use of this option is to specify the
include path, some symbols to define or undefine, the optimization level, or any C compiler
option that is different from the default. For example:

$ gsc —-cc-options "-U___ SINGLE_HOST -02 -I../include" bench.scm

The ‘-~ld-options-prelude’ and ‘-ld-options’ options are only meaningful

when the C target is selected and a dynamically loadable object file is being generated
(neither the ‘-c’ or ‘~1ink’ options are used). They can appear multiple times. The
‘~1d-options-prelude’ and ‘—~1d-options’ options add the specified options to the
command that invokes the C linker (the options in Id-options-prelude are passed to the C
linker before the input file and the options in Id-options are passed after). The main use
of this option is to specify additional object files or libraries that need to be linked, or any

Chapter 3: The Gambit Scheme compiler 14

C linker option that is different from the default (such as the library search path and flags
to select between static and dynamic linking). For example:
$ gsc -ld-options "-L/usr/X11R6/1lib -1X11 -dynamic" app.scm

The ‘-pkg-config’ is only meaningful when the C target is selected. The
‘—-pkg-config’ option will cause the pkg-config program to be invoked to determine
the options to add to the command that invokes the C compiler and C linker. It can
appear multiple times. The pkg—config program is passed the arguments in the string
pkg-config-args in addition to either ——cflags or ——1ibs. It is typical for pkg-config-args
to be the name of a system library, such as "sglite3", but other pkg—config options
can be specified, such as "--static sgqlite3". The ‘-pkg-config-path’ option
adds a path to the PKG_CONFIG_PATH environment variable for use by the pkg-—config
program to find ‘.pc’ files. For example:

$ gsc -pkg-config "x1l" -pkg-config-path "/usr/share/pkgconfig" app.

The ‘—warnings’ option displays on standard output all warnings that the compiler
may have.

The ‘-verbose’ option displays on standard output a trace of the compiler’s activity.

The ‘~report’ option displays on standard output a global variable usage report. Each
global variable used in the program is listed with 4 flags that indicate whether the global
variable is defined, referenced, mutated and called.

The ‘—expansion’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘—gvm’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file.gvm’.

The ‘-cfg’ option generates a visual representation of the control flow graph of the inter-
mediate code for the “Gambit Virtual Machine” (GVM) of each Scheme file on ‘file.cfg’.
The file is suitable for processing with the “dot” program. For example, to generate the
PDF file ‘file.cfg.pdf’ from ‘file.cfqg’ the following command can be used:

$ dot -O -Tpdf rfile.cfg

The ‘—dg’ option generates a visual representation of the dependency graph of each
Scheme file on ‘file.dg’. The file is suitable for processing with the “dot” program. For
example, to generate the PDF file ‘file.dg.pdf’ from ‘file.dg’ the following command
can be used:

$ dot -O —-Tpdf file.dg

The ‘-~debug’ option causes all kinds of debugging information to be saved in the code
generated. See the documentation of the ‘debug’ declaration for details.

The ‘-~debug-location’ option causes source code location debugging information
to be saved in the code generated. See the documentation of the ‘debug-location’
declaration for details.

The ‘—~debug-source’ option causes source code debugging information to be saved in
the code generated. See the documentation of the ‘debug—-source’ declaration for details.

The ‘-~debug-environments’ option causes environment debugging information to
be saved in the code generated. See the documentation of the ‘debug—environments’
declaration for details.

scm

Chapter 3: The Gambit Scheme compiler 15

The ‘—~track-scheme’ option is only meaningful when the C target is selected. The
‘~track—-scheme’ option causes the generation of ‘#1ine’ directives that refer back to
the Scheme source code. This allows the use of a C debugger or profiler to debug Scheme
code.

The ‘-0’ option sets the filename of the output file, or the directory in which the output
file(s) generated by the compiler are written.

If the ‘—1ink’ or ‘—exe’ options appear on the command line, the Gambit linker is
invoked to generate the link file from the set of files specified on the command line or
produced by the Gambit compiler. By default the link file is named after the last file on the
compiler’s command line. If the last file stripped of it’s extension is ‘Iast’ then the link
file is ‘1ast_.c’ for the C target and ‘Iast_.js’ for the js target. When the ‘~c’ option
is specified, the Scheme source files are compiled to target files without invoking the linker,
which is useful for separate compilation of modules. When the ‘—exe’ option is specified,
the generated target files and link file are combined to produce an executable program
whose name defaults to ‘Iast’ on Unix, and ‘last.exe’ or ‘last.bat’ on Windows
depending on whether a machine code executable or script is produced. When the C target
is selected and the ‘—ob 7’ option is specified, the generated C files are compiled using the
C compiler to produce object files (‘.0” or ‘.ob7j’ extensions). If neither the ‘-1ink’,
‘—c’, ‘—exe’, or ‘-ob7j’ options appear on the command line, the Scheme source files are
compiled to dynamically loadable object files (‘. on’ extension). The ‘~keep-temp’ option
will prevent the deletion of any intermediate files that are generated. Note that in this case
the intermediate file will be generated in the same directory as the Scheme source file even
if the ‘-0’ option is used.

The ‘-flat’ option is only meaningful when a link file is being generated (i.e. the
‘~1link’ or ‘—exe’ options also appear on the command line). The ‘~flat’ option directs
the Gambit linker to generate a flat link file. By default, the linker generates an incremental
link file (see the next section for a description of the two types of link files).

The ‘-1’ option is only meaningful when an incremental link file is being generated (i.e.
the ‘—=1ink’ or ‘—exe’ options appear on the command line and the ‘~flat’ option is
absent). The ‘1’ option specifies the link file (without the ‘.c’ or ‘. js’ extension) of the
base library to use for the incremental link. By default the link file of the Gambit runtime
library is used (i.e. ‘" "1ib/_gambit’).

The ‘—-preload’ and ‘—nopreload’ options are only meaningful when a link file is
being generated. The ‘—preload’ option turns on the ‘preload’ linker bit for the modules
that follow on the command line. The following modules will be loaded unconditionally at
program startup and in command line order (this is the default for compatibility with how
legacy modules have been handled in the past). The ‘-nopreload’ option turns off the
‘preload’ linker bit. The following modules will be loaded only to satisfy the module
dependencies of the ##demand-module form.

The ‘- option starts a REPL interaction.
The ‘—e’ option evaluates the specified expressions in the interaction environment.

The ‘-nb-gvm-regs’ option specifies the number of Gambit virtual machine registers
that are available for the generated code. The default number depends on configuration
options and the target but it is typically 5. All modules and the runtime library must

Chapter 3: The Gambit Scheme compiler 16

be compiled with the same setting. This option exists mainly for experimentation by the
developers. For example:
$ gsc —-nb-gvm-regs 10 —-c bench.scm

The ‘-nb-arg-regs’ option specifies the number of procedure call parameters passed
in Gambit virtual machine registers. The default number depends on configuration options
and the target but it is typically 3. All modules and the runtime library must be compiled
with the same setting. This option exists mainly for experimentation by the developers.
For example:

$ gsc —-nb—arg-regs 2 —-c bench.scm

The ‘—compactness’ option selects the level of compactness of the generated code. The
default level depends on configuration options and the target but it is typically 5. Levels
from 0 to 5 cause the generation of increasingly compact code with little or no impact on
execution speed. Lower values tend to make the generated code more humanly readable.
Above a level of 5 the compiler will trade execution speed for saving code space. The
detailed meaning of this option depends on the target, some targets may ignore it and some
targets may require all modules and the runtime library to be compiled with the same
compactness level. For example:

$ gsc -target Jjs —compactness 0 —-c bench.scm

3.4 Link files

Gambit can be used to create programs and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, a program is composed of a set of Scheme modules and modules in the target
language. Some of the modules are part of the Gambit runtime library and the other
modules are supplied by the user. When the program is started it must setup various global
tables (including the symbol table and the global variable table) and then sequentially
execute the Scheme modules (more or less as though they were being loaded one after
another). The information required for this is contained in one or more link files generated
by the Gambit linker from the target files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because
most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus a program built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine
if the program is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
programs (this linking information typically takes hundreds of kilobytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the 1oad procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, a program can be built by linking the user modules

Chapter 3: The Gambit Scheme compiler 17

with the runtime library’s link file, producing an incremental link file. This allows the cre-
ation of a shared-library which contains the modules of the runtime library and its flat link
file. The program is dynamically linked with this shared-library and only contains the user
modules and the incremental link file. For small programs this approach greatly reduces the
size of the program because the incremental link file is small. A “hello world” program built
this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an incremental
link file for statically linked programs (there is very little loss compared to a single flat link
file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to invoke gsc with the ‘—exe’ option.
The compiler will transparently perform all the steps necessary, including compiling Scheme
source files to target files, generating the link file, and (when the C target is selected)
compiling the C files generated to object files and creating the final executable file using
the C linker. The following example shows how to use the C target to build the executable
program ‘hello.exe’ which contains the two Scheme modules ‘h.scm’” and ‘w.six’.

$ cat h.scm

(display "hello") (newline)

$ cat w.six

display ("world"); newline();

S gsc —o hello.exe —exe h.scm w.six

h.scm:

/Users/feeley/gambit/doc/h.c:

w.six:

/Users/feeley/gambit/doc/w.c:

/Users/feeley/gambit/doc/w_.c:

$./hello.exe

hello

world

The detailed steps which are performed can be viewed by setting the
‘GAMBUILD_VERBOSE’ environment variable to a nonnull value. Alternatively,
gsc’s ‘—verbose’ option can be used (it implicitly sets the ‘GAMBUILD_VERBOSE’
environment variable). For example:

$ export GAMBUILD_VERBOSE=yes
$ gsc -o hello.exe -exe h.scm w.six

h.scm:
/Users/feeley/gambit/doc/h.c:
gcc -01 —-Wno-unused -Wno-write-strings -Wdisabled-optimization

fwrapv —-fno-strict-aliasing —-fno-trapping-math —-fno-math-errno
—fschedule-insns2 —-foptimize-sibling-calls —-fomit-frame-pointer —-fPIC

—-fno—-common -mpc64 -D_ SINGLE_HOST -I"/usr/local/Gambit/include"
-¢c —o 'h.o" ’'h.c’

w.six:

/Users/feeley/gambit/doc/w.c:

gcc -01 —-Wno-unused -Wno-write-strings -Wdisabled-optimization

—fwrapv —-fno-strict-aliasing —-fno-trapping-math —-fno-math-errno
—fschedule-insns2 —-foptimize-sibling-calls —-fomit-frame-pointer -fPIC
—fno-common -mpc64 -D___ SINGLE_HOST -I"/usr/local/Gambit/include"
-¢c —o 'w.o" 'w.c’

/Users/feeley/gambit/doc/w_.c:

Chapter 3: The Gambit Scheme compiler 18

gcc -01 -Wno-unused -Wno-write-strings -Wdisabled-optimization
—fwrapv —-fno-strict-aliasing —-fno-trapping-math —-fno-math-errno
—fschedule-insns2 —-foptimize-sibling-calls —-fomit-frame-pointer —-fPIC

—fno-common -mpc64 -D SINGLE_HOST -I"/usr/local/Gambit/include"
-c -0 '"w_.o’ "w_.c’
gcc -Wno-unused -Wno-write-strings -Wdisabled-optimization

—fwrapv —-fno-strict-aliasing —-fno-trapping-math —-fno-math-errno
—fschedule-insns2 —-foptimize-sibling-calls —-fomit-frame-pointer —-fPIC
—-fno-common -mpc64 -D SINGLE_HOST -I"/usr/local/Gambit/include"

-0 "hello.exe’ "w_.o" '"h.o’ ’"w.o’ "/usr/local/Gambit/lib/libgambit.a"

Here is the same example using the js target showing the creation of a shell script
invoking nodejs:
$ export GAMBUILD_VERBOSE=yes
$ gsc —-target js —-o hello.exe —-exe h.scm w.six
h.scm:
/Users/feeley/gambit/doc/h. js:
cat h.js > "h.o"
wW.six:
/Users/feeley/gambit/doc/w. js:
cat w.js > "w.o"
/Users/feeley/gambit/doc/w_. js:
cat w_.Jjs > "w_.o"
echo "#! /usr/bin/env node" > "hello.exe"
cat w_.o h.o w.o "/usr/local/Gambit/lib/_gambit.js" >> "hello.exe"
chmod +x "hello.exe"

Using a single invocation of gsc with the ‘—exe’ option is sometimes inappropriate
when the build process is more complex, for example when the program is composed of
several separately compiled modules. In such a case it is useful to decompose the build
process into smaller compilation steps. The ‘hello.exe’ executable program could have
been built with the C target by separating the generation of C files from the C compilation
and linking:

$ gsc —c h.scm
$ gsc —-c w.six
$ gsc -o hello.exe -exe h.c w.c

When even finer control is desired the C target’s build process can be decomposed into
smaller steps that invoke the C compiler and linker explicitly. This is described in the rest
of this section.

The gsc compiler can be invoked to compile each Scheme module into a C file and to
create an incremental link file. The C files and the link file must then be compiled with a C
compiler and linked (at the object file level) with the Gambit runtime library and possibly
other libraries (such as the math library and the dynamic loading library).

Here is for example how a program with three modules (one in C and two in Scheme)
can be built. The content of the three source files (‘ml.c’, ‘m2.scm’ and ‘m3.scm’) is:

/* File: "ml.c" */
int power_of_2 (int x) { return 1<<x; }

File: "m2.scm"

7

(c—declare "extern int power_of_2 ();")

(define pow2 (c—-lambda (int) int "power_of_2"))
(define (twice x) (cons x X))

; File: "m3.scm"

Chapter 3: The Gambit Scheme compiler 19

(write (map twice (map pow2 (1 2 3 4)))) (newline)
The compilation of the two Scheme source files can be done with three invocations of

gsc:
$ gsc —c m2.scm # create m2.c (note: .scm is optional)
$ gsc —c m3.scm # create m3.c (note: .scm is optional)
$ gsc -link m2.c m3.c # create the incremental link file m3-.c

Alternatively, the three invocations of gsc can be replaced by a single invocation:

$ gsc —-link m2 m3
m2:
m3:

At this point there will be 4 C files: ‘ml.c’, ‘m2.c¢’, ‘m3.c’, and ‘m3_.c’. To pro-
duce an executable program these files must be compiled with a C compiler and linked
with the Gambit runtime library. The C compiler options needed will depend on the
C compiler and the operating system (in particular it may be necessary to add the op-
tions ‘-I/usr/local/Gambit/include —L/usr/local/Gambit/1lib’ to access the
‘gambit.h’ header file and the Gambit runtime library).

Here is an example under macOS:

$ uname -srmp

Darwin 20.6.0 x86_64 1386

$ gsc —obj ml.c m2.c m3.c m3_.c
ml.c:

m2.c:

m3.c:

m3_.c:

$ gcc ml.o m2.0 m3.0 m3_.o -lgambit
$./a.out

((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is an example under Linux:
$ uname -srmp
Linux 5.10.0-9-amdo64 x86_64 unknown
$ gsc —obj ml.c m2.c m3.c m3_.c
ml.c:
m2.c:
m3.c:
m3_.c:
$ gcc ml.o m2.0 m3.0 m3_.0 -lgambit -1m -1dl -lutil
$./a.out
((2 . 2) (4 . 4) (8 .8) (16 . 16))

3.4.2 Building a loadable library

To bundle multiple modules into a single object file that can be dynamically loaded with
the load procedure, a flat link file is needed. The compiler’s ‘—o’ option must be used
to name the C file generated as follows. If the dynamically loadable object file is to be
named ‘myfile.on’ then the ‘—o’ option must set the name of the link file generated
to ‘myfile.on.c’ (note that the ‘.c’ extension could also be ‘.cc’, ‘.cpp’ or whatever
extension is appropriate for C/C++ source files). The three modules of the previous example
can be bundled by generating a link file in this way:

$ gsc -link —-flat -o foo.ol.c m2 m3
m2 :

m3:

*** WARNING —-- "cons" is not defined,

Chapter 3: The Gambit Scheme compiler 20

* k& referenced in: ("m2.c")
***x WARNING —-- "map" is not defined,

* k% referenced in: ("m3.c")
*** WARNING —-- "newline" is not defined,
* k% referenced in: ("m3.c")
*** WARNING —-- "write" is not defined,

* %k referenced in: ("m3.c")

The warnings indicate that there are no definitions (defines or set !s) of the variables
cons, map, newline and write in the set of modules being linked. Before ‘foo.ol’ is
loaded, these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

When compiling the C files and link file generated, the flag ‘-D DYNAMIC’ must
be passed to the C compiler and the C compiler and linker must be told to generate a
dynamically loadable shared library.

Here is an example under macOS:

$ uname -srmp

Darwin 20.6.0 x86_64 1386

$ gsc -link -flat -o foo.o0l.c m2 m3 > /dev/null
m2:

m3:

$ gsc —cc-options "-D___ DYNAMIC" -obj ml.c m2.c m3.c foo.ol.c
ml.c:

m2.c:

m3.c:

foo.ol.c:

$ gcec -bundle ml.o m2.o0 m3.0 foo.o0l.o —o foo.ol
$ gsi foo.ol

((2 . 2) (4 . 4) (8 . 8) (1o . 16))

Here is an example under Linux:

$ uname -srmp

Linux 5.10.0-9-amdo64 x86_64 unknown

$ gsc -link -flat -o foo.0l.c m2 m3 > /dev/null
m2 :

m3:

$ gsc —cc-options "-D___ DYNAMIC" -obj ml.c m2.c m3.c foo.ol.c
ml.c:

m2.c:

m3.c:

foo.ol.c:

$ gecc -shared ml.o m2.0 m3.0 foo.ol.o —o foo.ol
$ gsi foo.ol

((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.ol’ composed of the files ‘m4.scm’, ‘m5.scm’ and ‘x.c’ that links to
system shared libraries (for X-windows):

$ uname -srmp

SunOS ungava 5.6 Generic_105181-05 sund4m sparc SUNW, SPARCstation-20
$ gsc -link -flat -o mymod.ol.c m4 m5

m4 :

m5:

*** WARNING —-—- "*" is not defined,

* ok x referenced in: ("m4.c")

**%* WARNING —-- "+" is not defined,

Chapter 3: The Gambit Scheme compiler 21

* k& referenced in: ("m5.c")

*** WARNING —-- "display" is not defined,

* k% referenced in: ("m5.c" "m4.c")
*** WARNING —-- "newline" is not defined,

Kk K referenced in: ("m5.c" "m4.c")
*** WARNING —-- "write" is not defined,

* %k referenced in: ("m5.c")

$ gsc —cc-options "-D___ DYNAMIC" -obj md.c m5.c x.c mymod.ol.c
mé.c:

mS5.c:

X.C:

mymod.ol.c:

$ /usr/cecs/bin/ld -G —o mymod.ol mymod.ol.o md.o m5.0 x.o0 —-1X11 -lsocket
$ gsi mymod.ol

hello from m4

hello from mb5

(£1 10) = 22

$ cat md.scm

(define (f1 x) (* 2 (f2 x)))

(display "hello from m4")

(newline)

(c—declare #<<c—-declare—-end
#include "x.h"
c—declare-end

)

(define x-initialize (c-lambda (char-string) bool "x_initialize"))
(define x-display-name (c—lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))

S cat m5.scm

(define (f2 x) (+ x 1))

(display "hello from m5")

(newline)

(display " (f1 10) = ")
(write (£1 10))
(newline)

(x—initialize (x-display-name))
(x—bell 50) ; sound the bell at 50%
$ cat x.c

#include <X11/X1lib.h>

static Display *display;

int x_initialize (char *display_name)

{
display = XOpenDisplay (display_name);
return display != NULL;

}

char *x_display_name (void)
{
return XDisplayName (NULL) ;

}

void x_bell (int volume)

{

Chapter 3: The Gambit Scheme compiler 22

XBell (display, volume);
XFlush (display);
}
$ cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incre-
mental link file is normally used when the Gambit runtime library (or some other library)
is to be extended with new procedures. A flat link file is mainly useful when building
a “primal” runtime library, which is a library (such as the Gambit runtime library) that
does not extend another library. When compiling the C files and link file generated, the
flags ‘“-D____LIBRARY’ and ‘-D____SHARED’ must be passed to the C compiler. The flag
‘~D____PRIMAL’ must also be passed to the C compiler when a primal library is being built.

A shared-library ‘mylib.so’ containing the two first modules of the previous example
can be built this way:

$ uname -srmp

Linux 5.10.0-9-amdo64 x86_64 unknown

$ gsc -link -o mylib.c m2

$ gsc —-obj —cc—-options "-D___ SHARED" ml.c m2.c mylib.c

ml.c:

m2.c:

mylib.c:

$ gcc -shared ml.o m2.o0 mylib.o —o mylib.so

Note that this shared-library is built using an incremental link file (it extends the Gambit

runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

$ gsc -link -1 mylib m3

$ gsc —obj m3.c m3_.c

m3.c:

m3_.c:

$ gcc m3.0 m3_.o mylib.so —-lgambit

$ LD_LIBRARY PATH=.:/usr/local/lib ./a.out

((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.4 Other compilation options

The performance of the code can be increased by passing the ‘~D____ SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-02’ option can
be passed to the C compiler. For large modules, it will not be practical to specify both
‘=02’ and ‘~D___SINGLE_HOST’ for typical C compilers because the compile time will be
high and the C compiler might even fail to compile the program for lack of memory. It has
been observed that lower levels of optimization (e.g. ‘~01’) often give faster compilation
and also generate faster code. It is a good idea to experiment.

Normally C compilers will not automatically search ‘/usr/local/Gambit/include’
for header files so the flag ‘-I/usr/local/Gambit/include’ should be passed
to the C compiler. Similarly, C compilers/linkers will not automatically search
‘/usr/local/Gambit/1lib’ for libraries so the flag ‘-L/usr/local/Gambit/1lib’

Chapter 3: The Gambit Scheme compiler 23

should be passed to the C compiler/linker. Alternatives are given in Section 1.1 [Accessing
the system files], page 1.

A variety of flags are needed by some C compilers when compiling a shared-library or
a dynamically loadable library. Some of these flags are: ‘—~shared’, ‘~call_shared’,
‘~rdynamic’, ‘-fpic’, ‘-fPIC’, ‘-Kpic’, ‘“-KPIC’, ‘-pic’, ‘+z’, ‘-G’. Check your com-
piler’s documentation to see which flag you need.

3.5 Procedures specific to compiler

The Gambit Scheme compiler features the following procedures that are not available in
the Gambit Scheme interpreter.

(compile-file-to-target file [options: options] [output: procedure
output| [expression: expression|)

The file parameter must be a string. If expression is not specified, file must name
an existing file containing Scheme source code. The extension can be omitted from
file when the Scheme file has a ‘. scm’, ‘. s1d’ or ‘.six’ extension. By default, this
procedure compiles the source file into a file containing C code. A different target
language can be selected in the options. The generated file is named after file with
the extension replaced with ‘. c’ or ‘. js’, as appropriate for the target selected. The
name of the generated file can also be specified directly with the output parameter.
If output is a string naming a directory then the generated file is created in that
directory. Otherwise the name of the generated file is output.

Compilation options are specified through the options parameter which must
be an association list. Any combination of the following options can be used:
‘target’, ‘verbose’, ‘report’, ‘expansion’, ‘gvm’, ‘debug’, ‘module-ref’,
and ‘linker—-name’.

When expression is specified, the file parameter is not open or read. Instead, expres-
sion is used as though it was the content of the file. This makes it possible to compile
source code without having to create a file to contain the code. Note that file is used
in error messages and to determine the output file name if output is not specified.

When the compilation is successful, compile-file-to-target returns the name
of the file generated. When there is a compilation error, #f is returned.

$ cat h.scm

(display "hello") (newline)
$ gsc

Gambit v4.9.4

> (compile-file-to-target "h")
"/Users/feeley/gambit/doc/h.c"

(compile-file file [options: options] [output: output] [base: procedure
base] [expression: expression] [cc-options: cc-options]
[ld-options-prelude: Id-options-prelude] [ld—options: Id-options])

The file, options, output, and expression parameters have the same meaning as for the
compile-file-to-target procedure, except that file may be a Scheme source
file or a file possibly generated by the Gambit Scheme compiler (for example with
the compile-file-to-target procedure). The cc-options parameter is a string

Chapter 3: The Gambit Scheme compiler 24

containing the options to pass to the C compiler and the Id-options-prelude and Id-
options parameters are strings containing the options to pass to the C linker (the
options in Id-options-prelude are passed to the C linker before the input file and the
options in Id-options are passed after).

The compile-file procedure compiles the source file file into an object file, which is
either a file dynamically loadable using the 1oad procedure, or a C linkable object file
destined to be linked with the C linker (for example to create a standalone executable
program). The presence of the ob7j option in options will cause the creation of a C
linkable object file and therefore the options Id-options-prelude and Id-options are
ignored, otherwise a dynamically loadable file is created. In both cases, if file is a
Scheme source file, the compiler first compiles file to a C file which is created in the
same directory as file regardless of the output parameter. Then the C file is compiled
with the C compiler.

When the compilation is successful, compile-file returns the name of the object
file generated. When there is a compilation error, #f is returned.

The name of the object file can be specified with the output parameter. If output is a
string naming a directory then the object file is created in that directory. Otherwise
the name of the object file is output.

In the case of a dynamically loadable object file, by default the object file is named
after file with the extension replaced with ‘. on’, where n is a positive integer that acts
as a version number. The next available version number is generated automatically
by compile-file.

When dynamically loaded object files are loaded using the 1oad procedure, the ‘. on’
extension can be specified (to select a particular version) or omitted (to load the file
with a ‘.on’ extension with the highest n consecutively from 1). When the ‘.on’
extension is not specified and older versions are no longer needed, all versions must
be deleted and the compilation must be repeated (this is necessary because the file
name, including the extension, is used to name some of the exported symbols of the
object file).

Note that dynamically loadable object files can only be generated on host operating
systems that support dynamic loading.

4

$ cat h.scm

(display "hello") (newline)
$ gsc

Gambit v4.9.4

> (compile-file "h")
"/Users/feeley/gambit/doc/h.ol"

> (load "h")

hello
"/Users/feeley/gambit/doc/h.ol"

> (compile-file-to-target "h" output: "h.099.c")
"/Users/feeley/gambit/doc/h.099.c"
> (compile-file "h.099.c")
"/Users/feeley/gambit/doc/h.o99"

> (load "h.o99")

hello
"/Users/feeley/gambit/doc/h.o99"

> (compile-file-to-target "h")

Chapter 3: The Gambit Scheme compiler 25

"/Users/feeley/gambit/doc/h.c"
> (compile-file "h.c" options: ’ (obj))
"/Users/feeley/gambit/doc/h.o"

(link—-incremental module-list [output : output| procedure
[linker—name: linker-name] [base: base| [warnings?: warnings?])

The first parameter must be a non empty list of strings naming Scheme modules to
link (the file extension may be omitted). An incremental link file is generated for
the modules specified in module-list. By default the link file generated is named
‘last_.ext’, where last is the name of the last module, without the file extension,
and ext is the appropriate extension for the target. The name of the generated link file
can be specified with the output parameter. If output is a string naming a directory
then the link file is created in that directory. Otherwise the name of the link file is
output.

The base link file is specified by the base parameter, which must be a string. By
default the base link file is the Gambit runtime library link file ‘" "1ib/_gambit’
(with extension appropriate for the target). However, when base is supplied it is the
name of the base link file (the file extension may be omitted).

The warnings? parameter controls whether warnings are generated for undefined
references.

The following example shows how to build the executable program ‘hello’ which
contains the two Scheme modules ‘h.scm’ and ‘w.six’.

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc
$ cat h.scm

(display "hello") (newline)

$ cat w.six

display ("world"); newline();

$ gsc

Gambit v4.9.4

> (compile-file-to-target "h")
"/Users/feeley/gambit/doc/h.c"

> (compile-file-to-target "w"
"/Users/feeley/gambit/doc/w.c"

> (link-incremental ' ("h" "w") output: "hello.c")
"/Users/feeley/gambit/doc/hello_.c"

> .9

$ gsc -obj h.c w.c hello.c

h.c:

w.C:

hello.c:

$ gcc h.o w.o hello.o -lgambit -o hello
$./hello

hello

world

(link-flat module-list [output : output] [Linker—name: procedure
linker-name] [warnings?: warnings?])

The first parameter must be a non empty list of strings naming Scheme modules

to link (the file extension may be omitted). The first string must be the name of

a Scheme module or the name of a link file and the remaining strings must name

Chapter 3: The Gambit Scheme compiler 26

Scheme modules. A flat link file is generated for the modules specified in module-list.
By default the link file generated is named ‘last_.ext’, where last is the name
of the last module, without the file extension, and ext is the appropriate extension
for the target. The name of the generated link file can be specified with the output
parameter. If output is a string naming a directory then the link file is created in that
directory. Otherwise the name of the link file is output. If a dynamically loadable
object file is produced from the link file ‘output’, then the name of the dynamically
loadable object file must be ‘output’ stripped of its file extension.

The warnings? parameter controls whether warnings are generated for undefined
references.

The following example shows how to build the dynamically loadable object file
‘1ib.o1l’ which contains the two Scheme modules ‘m6.scm’ and ‘m7.scm’.

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc
$ cat m6.scm

(define (f x) (g (* x x)))

$ cat m7.scm

(define (g y) (+ n y))

$ gsc

Gambit v4.9.4

> (compile-file-to-target "mé6")
"/Users/feeley/gambit/doc/m6.c"
> (compile-file-to-target "m7")
"/Users/feeley/gambit/doc/m7.c"
> (link—-flat ' ("m6" "m7") output: "lib.ol.c")

*** WARNING —-- "*" is not defined,

*kx referenced in: ("m6.c")

*** WARNING —-- "+" is not defined,

* A K referenced in: ("m7.c")

**% WARNING —-- "n" is not defined,

* kK referenced in: ("m7.c")
"/Users/feeley/gambit/doc/lib.ol.c"

> 9

$ gecc -bundle -D___ DYNAMIC m6.c m7.c lib.ol.c -o lib.ol
$ gsc

Gambit v4.9.4

> (load "1lib")

*** WARNING —-- Variable "n" used in module "m7" is undefined

"/Users/feeley/gambit/doc/lib.ol"

> (define n 10)

> (£ 5)

35

> ,q
The warnings indicate that there are no definitions (defines or set!s) of the vari-
ables *, + and n in the modules contained in the library. Before the library is used,
these variables will have to be bound; either implicitly (by the runtime library) or

explicitly.

Chapter 4: Runtime options 27

4 Runtime options

Both gsi and gsc as well as executable programs compiled and linked using gsc take a
‘—:” option which supplies parameters to the runtime system. This option must appear first
on the command line. The colon is followed by a comma separated list of options with no
intervening spaces. The available options are:

min-heap=SIZFE or the shorthand mSIZE
Set minimum heap size.

max-heap=SIZF or the shorthand hSIZFE
Set maximum heap size.

live-ratio=RATIO or the shorthand 1RATIO
Set the ratio of heap that is live after a garbage collection.

gambit or the (deprecated) shorthand s
Select Gambit Scheme mode. This is the default mode.

r5rs or the (deprecated) shorthand s
Select RSRS Scheme mode.

rirs Select R7RS Scheme mode.

debug[=[OPT...]] or the shorthand d[OPT...]
Set debugging options.

~"NAME=DIRECTORY
Override the NAME installation directory.

add-arg=ARGUMENT or the shorthand + ARGUMENT
Add ARGUMENT to the command line before other arguments.

io-settings=[I0...] or the shorthand i[IO...]
Set general I/O settings.

file-settings=[I0...] or the shorthand £[IO...]
Set general file I/O settings.

stdio-settings=[[O...] or the shorthand -[IO...]
Set general stdio settings.

0[I0..]] Set stdin settings.
1[I10..]] Set stdout settings.
2[I10...] Set stderr settings.

terminal-settings=[[O...] or the shorthand t[IO...]
Set terminal I/O settings.

search=[DIR] Set or reset module search order.

whitelist=[SOURCE]
Set or reset the whitelist of trusted sources for automatic installation of
hosted modules.

Chapter 4: Runtime options 28

ask-install=WHEN
Set automatic installation confirmation mode.

The min-heap=SIZFE and max-heap=SIZFE options set limits on the size of the heap. The
SIZE is an integer that may be followed by G (gigabytes), M (megabytes), or K or nothing
(kilobytes). The heap will not shrink lower than the minimum heap size which defaults to
0. The heap will not grow larger than the maximum heap size if it is set (by default the
heap may grow until the virtual memory is exhausted).

The 1ive-ratio=RATIO option sets the percentage of the heap that will be occupied
with live objects after the heap is resized at the end of a garbage collection. RATIO is
an integer between 1 and 100 inclusively indicating the desired percentage. The garbage
collector resizes the heap to reach this percentage occupation (roughly), within the limits
of the min-heap and max—heap options. By default, the percentage is 50.

The gambit, r5rs and r7rs options configure the runtime system to conform to Gambit
Scheme, RSRS Scheme and R7RS Scheme respectively. The reader is case-insensitive in
r5rs mode, and is case-sensitive in r7rs and gambit modes. The reader supports keywords
only in gambit mode, which is the default mode.

The debug=OPT,... option sets various debugging options. The equal sign is followed
by a sequence of letters indicating suboptions.

P Uncaught exceptions will be treated as “errors” in the primordial thread
only.

a Uncaught exceptions will be treated as “errors” in all threads.

r When an “error” occurs a new REPL will be started.

s When an “error” occurs a new REPL will be started. Moreover the

program starts in single-stepping mode.

q When an “error” occurs the program will terminate with a nonzero exit
status.
R When a user interrupt occurs a new REPL will be started. User inter-

rupts are typically obtained by typing ("C). Note that with some system
configurations abruptly terminates the process. For example, un-
der Microsoft Windows, works fine with the standard console but
with the MSYS terminal window it terminates the process.

D When a user interrupt occurs it will be deferred until the parameter
object current—-user—-interrupt-handler is set or bound.

o] When a user interrupt occurs the program will terminate with a nonzero
exit status.
LEVEL The verbosity level is set to LEVEL, a digit from 0 to 9. At level 0 the

runtime system will not display error messages and warnings. At level
1 and above error messages and warnings are displayed. At level 2 and
above a backtrace is displayed. At level 3 and above variable bindings
are displayed in the backtrace. At level 5 and above garbage collection
reports are displayed during program execution.

c The REPL interaction channel will be the console.

Chapter 4: Runtime options 29

- The REPL interaction channel will be standard input and standard
output.

+ The REPL interaction channel will be standard input and standard
output and standard error.

@Q[HOST][: PORT]
When a REPL is started by a thread a connection will be established
with the address HOST:PORT and that will be the REPL’s interaction
channel. The default HOST is 127.0.0.1 and the default PORT is 44556.

$[INTF][: PORT| The runtime system will open a socket to listen on port number PORT
for incoming connections on the network interface with address INTF.
The default INTF is 127.0.0.1 and the default PORT is 44555.

The default debugging options are equivalent to debug=pgQ1l- (i.e. an uncaught ex-
ception in the primordial thread terminates the program after displaying an error message).
When the option debug is used without suboptions it is equivalent to debug=prR1- (i.e.
a new REPL is started only when an uncaught exception occurs in the primordial thread).
When gsi and gsc are running the main REPL, the debugging options are changed to
cause errors in the primordial thread and user interrupts to start a nested REPL.

The ~"NAME=DIRECTORY option overrides the setting of the NAME installation
directory. If NAME is empty, it will override the central installation directory.

The add-arg=ARGUMENT option adds the text that follows to the command line
before other arguments.

The option io-settings=[I0...] sets the default I/O settings of all types of ports. The
option file-settings=[IO...] sets the default I/O settings for ports associated to files.
The option stdio-settings=[I0...] sets the default I/O settings for ports associated to
stdio (but finer control is possible with 0[IO...], 1[IO...], and 2[IO...] that set the I/O
settings of stdin, stdout, and stderr respectively). The option terminal-settings=[I0...]
overrides the default 1/O settings for ports associated to terminals. The default character
encoding, end-of-line encoding and buffering can be set. Moreover, for terminals the line-
editing feature can be enabled or disabled. Each IO is a one or two letter code as follows:

ASCII character encoding.
ISO-8859-1 character encoding.
UCS-2 character encoding.

UTF-16 character encoding.

A
1
2
4 UCS-4 character encoding.
6
8 UTF-8 character encoding.
U

UTF character encoding with fallback to UTF-8 on input if no BOM is
present.

UA UTF character encoding with fallback to ASCII on input if no BOM is
present.

Ul UTF character encoding with fallback to ISO-8859-1 on input if no BOM
is present.

Chapter 4: Runtime options 30

U6 UTF character encoding with fallback to UTF-16 on input if no BOM
is present.

Us UTF character encoding with fallback to UTF-8 on input if no BOM is
present.

L If the LC_ALL or LC_CTYPE or LANG environment variables end with

‘.UTF-8’ or ‘.IS0-8859-1" or ‘.LATIN-1’ (or a variation) set the
character encoding accordingly.

c End-of-line is encoded as CR (carriage-return).

1 End-of-line is encoded as LF (linefeed)

cl End-of-line is encoded as CR-LF.

u Unbuffered 1/0.

n Line buffered I/O (‘n’ for “at newline”).

f Fully buffered I/0.

r Illegal character encoding is treated as an error (exception raised).

R Silently replace illegal character encodings with Unicode character

#xfffd (replacement character).
e Enable line-editing (applies to terminals only).
E Disable line-editing (applies to terminals only).

The search=[DIR] option adds DIR to the head of the list of module search order
directories, unless DIR is empty, in which case it is set to the empty list. The initial setting
of the list of module search order directories is ~~1ib followed by ~“userlib.

When a hosted module can’t be found in the directories on the list of module search order
directories it will be automatically installed if it is from a source on the whitelist of trusted
sources, which initially contains only github.com/gambit. The whitelist=[SOURCE]
option adds SOURCE to the whitelist, unless SOURCE is empty in which case the whitelist
will be set to the empty list (no source is trusted).

The ask-install=WHEN option sets the automatic installation mode confirmation
mode to WHEN, which is one of always, repl, and never. When a hosted module
can’t be found in the directories on the list of module search order directories and it is
from a source not on the whitelist the runtime system will ask for installation confirmation
when WHEN is always, or when a REPL has already been started for the current thread
and WHEN is repl. In the never mode the runtime system will not install the module
automatically. The default mode is repl.

When a program’s execution starts, the runtime system obtains the runtime options by
processing in turn various sources of runtime options: the defaults, the environment variable
‘GAMBOPT’, the script line of the source code, and, unless the program is an interpreted
script, the first command line argument of the program. Any runtime option can be overri-
den by a subsequent source of runtime options. It is sometimes useful to prevent overriding
the runtime options of the script line. This can be achieved by starting the script line

runtime options with ‘—:,’. In this case the environment variable ‘GAMBOPT’ is ignored,

Chapter 4: Runtime options 31

and the first command line argument of the program is not used for runtime options (it is

treated like a normal command line argument even if it starts with ‘-:").

For example:
$ export GAMBOPT=debug=0, "~ "="/my—-gambit2
$ gsi -e ' (pretty-print (path-expand """")) (/ 1 0)’
"/Users/feeley/my—gambit2/"
$ echo $7?
70
$ gsi —-:debug=1l -e ’ (pretty-print (path-expand """")) (/ 1 0)’
"/Users/feeley/my—gambit2/"
*** ERROR IN (string)@l.35 —-- Divide by =zero

(/ 10)

Chapter 5: Debugging 32

5 Debugging

5.1 Debugging model

The evaluation of an expression may stop before it is completed for the following reasons:
a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing (CO)).
c. A breakpoint has been reached or (step) was evaluated.

d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name
of the procedure where the evaluation was stopped and the source code location in the
format ‘stream@line.column’, where stream is either a string naming a file or a symbol
within parentheses, such as ‘ (console)’.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. For example when evaluating the
expression ‘(let ((y (=11))) (* (/ xvy) 2))’, a “divide by zero” error is reported
and the nested REPL’s continuation is the one that takes the result and multiplies it
by two. The REPL’s lexical environment includes the lexical variable ‘y’. This allows
the inspection of the evaluation context (i.e. the lexical and dynamic environments and
continuation), which is particularly useful to determine the exact location and cause of an
error.

The prompt of nested REPLs includes the nesting level; ‘1>’ is the prompt at the first
nesting level, ‘2>" at the second nesting level, and so on. An end of file (usually (D)) will
cause the current REPL to be terminated and the enclosing REPL (one nesting level less)
to be resumed.

At any time the user can examine the frames in the REPL’s continuation, which is
useful to determine which chain of procedure calls lead to an error. A backtrace that lists
the chain of active continuation frames in the REPL’s continuation can be obtained with the
‘, b’ command. The frames are numbered from 0, that is frame 0 is the most recent frame
of the continuation where execution stopped, frame 1 is the parent frame of frame 0, and
so on. It is also possible to move the REPL to a specific parent continuation (i.e. a specific
frame of the continuation where execution stopped) with the ¢, N’, ¢, N+’ ¢, N=", ¢, +7, ¢, =,
‘,++’, and ‘, ——’ commands. When the frame number of the frame being examined is not
zero, it is shown in the prompt after the nesting level, for example ‘1\5>’ is the prompt
when the REPL nesting level is 1 and the frame number is 5.

Expressions entered at a nested REPL are evaluated in the environment (both lexical
and dynamic) of the continuation frame currently being examined if that frame was created
by interpreted Scheme code. If the frame was created by compiled Scheme code then
expressions get evaluated in the global interaction environment. This feature may be used
in interpreted code to fetch the value of a variable in the current frame or to change its value
with set!. Note that some special forms (define in particular) can only be evaluated in
the global interaction environment.

Chapter 5: Debugging 33

5.2 Debugging commands

In addition to expressions, the REPL accepts the following special “comma” commands:

,?2and , help
, (h subject)

, (c expr)

;s C

Give a summary of the REPL commands.

This command will show the section of the Gambit manual with the
definition of the procedure or special form subject, which must be a
symbol. For example ¢, (h time)’ will show the section documenting
the time special form. Please see the help procedure for additional
information.

This command will show the section of the Gambit manual with the
definition of the procedure which raised the exception for which this
REPL was started.

Terminate the process with exit status 0. This is equivalent to calling
(exit 0).

Terminate the current thread (note that terminating the primordial
thread terminates the process).

Return to the outermost REPL, also known as the “top-level REPL”.

Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command can only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if the
evaluation of the expression ‘ (* (/ x y) 2)’ signaled an error because
‘y’ is zero, then in the nested REPL a ¢, (¢ (+ 4 y))’ will resume the
computation of ‘ (* (/ xy) 2) ’

)

as though the value of ‘ (/ x y)’ was
4. This command must be used carefully because the context where
the error occured may rely on the result being of a particular type. For
instance a ‘, (c #f)’ in the previous example will cause ‘*’ to signal
a type error (this problem is the most troublesome when debugging
Scheme code that was compiled with type checking turned off so be
careful).

Leave the current REPL and continue the computation that initiated
the REPL. This command can only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by step-level-set!) and then stop, caus-
ing a nested REPL to be entered. Just before the evaluation step is
performed, a line is displayed (in the same format as trace) which
indicates the expression that is being evaluated. If the evaluation step
produces a result, the result is also displayed on another line. A nested

Chapter 5: Debugging 34

REPL is then entered after displaying a message which describes the
next step of the computation. This command can only be used to con-
tinue a computation that was stopped due to a user interrupt, break-
point or a single-step.

This command is similar to ¢, s’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

Move to frame number N of the continuation. After changing the cur-
rent frame, a one-line summary of the frame is displayed as if the ¢, y’
command was entered.

Move forward by N frames in the chain of continuation frames (i.e.
towards older continuation frames). After changing the current frame,
a one-line summary of the frame is displayed as if the *, y’ command
was entered.

Move backward by N frames in the chain of continuation frames (i.e.
towards more recent continuation frames). After changing the current
frame, a one-line summary of the frame is displayed as if the ¢, y’ com-
mand was entered.

Equivalent to ¢, 1+'.
Equivalent to , 1-".

Equivalent to ¢, N+’ where N is the number of continuation frames dis-
played at the head of a backtrace.

Equivalent to ‘, N-" where N is the number of continuation frames dis-
played at the head of a backtrace.

Display a one-line summary of the current frame. The information is
displayed in four fields. The first field is the frame number. The second
field is the procedure that created the frame or ‘ (interaction)’if the
frame was created by an expression entered at the REPL. The remaining
fields describe the subproblem associated with the frame, that is the
expression whose value is being computed. The third field is the location
of the subproblem’s source code and the fourth field is a reproduction
of the source code, possibly truncated to fit on the line. The last two
fields may be missing if that information is not available. In particular,
the third field is missing when the frame was created by a user call to
the ‘eval’ procedure or by a compiled procedure not compiled with
the declaration ‘debug—-location’, and the last field is missing when
the frame was created by a compiled procedure not compiled with the
declaration ‘debug—-source’.

Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ‘, y’ command is displayed (except that loca-
tion information is displayed in the format ‘st ream@line: column’).

Chapter 5: Debugging 35

, bed

, (b expr)

, (be expr)
, (bed expr)

, ed

, (e expr)

If there are more than 15 frames in the chain of continuation frames,
some of the middle frames will be omitted.

Like the ‘, b’ command but also display the environment.
Like the ‘, be’ command but also display the dynamic environment.

Display the backtrace of expr’s value, X, which is obtained by evaluating
expr in the current frame. X must be a continuation or a thread. When
X is a continuation, the frames in that continuation are displayed. When
X is a thread, the backtrace of the current continuation of that thread
is displayed.

Like the ¢, (b expr)’ command but also display the environment.

Like the ¢, (be expr)’ command but also display the dynamic envi-
ronment.

Pretty print the procedure that created the current frame or
‘(interaction)’ if the frame was created by an expression entered
at the REPL. Compiled procedures will only be pretty printed when
they are compiled with the declaration ‘debug-source’.

Display the environment which is accessible from the current frame. The
lexical environment is displayed, followed by the dynamic environment
if the parameter object repl-display-dynamic—environment? is
not false. Global lexical variables are not displayed. Moreover the frame
must have been created by interpreted code or code compiled with the
declaration ‘debug-environments’. Due to space safety considera-
tions and compiler optimizations, some of the lexical variable bindings
may be missing. Lexical variable bindings are displayed using the format
‘variable = expression’ (when variable is mutable) or ‘variable
== expression’ (when variable is immutable, which may happen in
compiled code due to compiler optimization) and dynamically-bound
parameter bindings are displayed using the format ¢ (parameter) =
expression’. Note that expression can be a self-evaluating expres-
sion (number, string, boolean, character, ...), a quoted expression, a
lambda expression or a global variable (the last two cases, which are
only used when the value of the variable or parameter is a procedure,
simplifies the debugging of higher-order procedures). A parameter can
be a quoted expression or a global variable. Lexical bindings are dis-
played in inverse binding order (most deeply nested first) and shadowed
variables are included in the list.

Like the ¢, e’ command but the dynamic environment is always dis-
played.

Display the environment of expr’s value, X, which is obtained by eval-
uating expr in the current frame. X must be a continuation, a thread,
a procedure, or a nonnegative integer. When X is a continuation, the
environment at that point in the code is displayed. When X is a thread,
the environment of the current continuation of that thread is displayed.

Chapter 5: Debugging 36

When X is a procedure, the lexical environment where X was created is
combined with the current continuation and this combined environment
is displayed. When X is an integer, the environment at frame number
X of the continuation is displayed.

, (ed expr) Like the ¢, (e expr)’ command but the dynamic environment is always
displayed.
, st Display the state of the threads in the current thread’s thread group.

A thread can be: uninitialized, initialized, active, and terminated (nor-
mally or abnormally). Active threads can be running, sleeping and
waiting on a synchronization object (mutex, condition variable or port)
possibly with a timeout.

, (st expr) Display the state of a specific thread or thread group. The value of expr
must be a thread or thread group.

, (Vv expr) Start a new REPL visiting expr’s value, X, which is obtained by eval-
uating expr in the current frame. X must be a continuation, a thread,
a procedure, or a nonnegative integer. When X is a continuation, the
new REPL’s continuation is X and evaluations are done in the envi-
ronment at that point in the code. When X is a thread, the thread is
interrupted and the new REPL’s continuation is the point where the
thread was interrupted. When X is a procedure, the lexical environ-
ment where X was created is combined with the current continuation
and evaluations are done in this combined environment. When X is an
integer, the REPL is started in frame number X of the continuation.

5.3 Debugging example

Here is a sample interaction with gsi:

$ gsi
Gambit v4.9.4

> (define (invsqgr x) (/ 1 (expt x 2)))
> (define (mymap fn 1lst)
(define (mm in)
(if (null? in)
"()

(cons (fn (car in)) (mm (cdr in)))))

(mm 1st))
> (mymap invsgr ' (5 2 hello 9 1))
*** ERROR IN invsqgr, (console)@l1.25 -- (Argument 1) NUMBER expected
(expt "hello 2)
1> ,1i

#<procedure #2 invsqgr> =
(lambda (x) (/ 1 (expt x 2)))

1> ,e

x = "hello

1> ,b

0 invsqgr (console)@1:25 (expt x 2)

1 #<procedure #4> (console)@6:17 (fn (car 1in))
2 #<procedure #4> (console)@6:31 (mm (cdr 1in))
3 #<procedure #4> (console) @6:31 (mm (cdr in))

Chapter 5: Debugging 37

4 (interaction) (console)@8:1 (mymap invsqgr ' (5 2 hel...
1> ,+

1 #<procedure #4> (console)@6.17 (fn (car 1in))

IN1> (pp #4)

(lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr 1in)))))

I\1> ,e

in = /" (hello 9 1)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))

fn = invsqgr

lst = (5 2 hello 9 1)
1\1> , (e mm)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))
fn = invsqgr

lst = (5 2 hello 9 1)

1\1> £n

#<procedure #2 invsqgr>
I\1> (pp £n)
(lambda (x) (/ 1 (expt x 2)))

I\1> ,+

2 f#<procedure #4> (console)@6.31 (mm (cdr 1in))

1\2> ,e

in = (2 hello 9 1)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))
fn = invsqgr

lst = ' (5 2 hello 9 1)
1\2> , (c (list 3 4 5))
(1/25 1/4 3 4 5)

> ,q

5.4 Procedures related to debugging

(help [subject]) procedure

(help-browser [new-value]) procedure
The help procedure displays the section of the Gambit manual with the definition
of the procedure or special form subject, which must be a procedure or symbol. For
example the call (help gensym) will show the section documenting the gensym
procedure and the call (help ’time) will show the section documenting the t ime
special form. When the subject is absent, the documentation of the help procedure
is shown. The help procedure returns the void object.

The parameter object help-browser is bound to a string naming the external
program that is used by the help procedure to view the documentation.
Initially it is bound to the empty string. In normal circumstances when
help-browser is bound to an empty string the help procedure runs the script
““"bin/gambdoc.bat which searches for a suitable web browser to open the
documentation in HTML format. Unless the system was built with the command
‘configure -—enable-help-browser=...’, the text-only browser ‘lynx’
(see http://lynx.isc.org/) will be used by default if it is available. We
highly recommend that you install this browser if you are interested in viewing the
documentation within the console in which the REPL is running. You can exit

‘lynx’ conveniently by typing an end of file (usually (D)).

For example:
> (help-browser "firefox") ; use firefoxr instead of lynx

http://lynx.isc.org/

Chapter 5: Debugging 38

(help ’'gensym)

(help gensym) ; OK because gensym is a procedure

(help ’"time)

(help time) ; not OK because time is a special form

*** ERROR IN (console)@5.7 —-- Macro name can’t be used as a vari-
able: time

>

VvV V VvV

\%

(apropos [substring [port]]) procedure
The apropos procedure writes to the port port a report of all the global variables
whose name contains substring, a string or symbol. If substring is not specified
the report contains all the global variables. If it is not specified, port defaults to
the interaction channel (i.e. the output will appear at the REPL). The apropos
procedure returns the void object.

The global variables are grouped into namespaces. The empty namespace, if it is
relevant, is last. This reduces the likelihood it will scroll off the screen if there are
several global variables in other namespaces, which are typically less interesting.

Note that with the apropos procedure it is possible to reveal the existence of proce-
dures of the runtime system and modules that are not intended to be called by user
code. These procedures often avoid type checking their arguments or must be called
in a specific context, so calling them incorrectly may crash the system. On the other
hand it also allows discovering the existence of certain functionalities that may have
gone unnoticed.

For example:

> (apropos "cons")

"##" namespace:
10" -constants, cons, cons*, cons*-aux, console-port,
constant-expression-value, constant-expression?,
cprc—quasi-cons, deconstruct-call,
define-type-construct-constant, degen-quasi-cons,
gen—-quasi-cons, quasi-cons, stdio/console-repl-channel,
void-constant?, xcons

empty namespace:
cons, cons*, console-port, xcons

> (import (srfi 69))

> (apropos "table?")

"##" namespace:
gc—hash-table?, mutable?, readtable?, table?

"srfi/69#" namespace:
hash-table?

empty namespace:
readtable?, table?

> (apropos "srfi/69#")

"srfi/69#" namespace:
||, alist->hash-table, hash, hash-by-identity,
hash-table->alist, hash-table-copy, hash-table-delete!,
hash-table-equivalence-function, hash-table-exists?,
hash-table-fold, hash-table-hash-function,
hash-table-keys, hash-table-merge!, hash-table-ref,
hash-table-ref/default, hash-table-set!, hash-table-size,
hash-table-update!, hash-table-update!/default,
hash-table-values, hash-table-walk, hash-table?,
make-hash-table, string-ci-hash, string-hash

Chapter 5: Debugging 39

(repl-result-history-ref i) procedure

(repl-result-history-max—length-set! n) procedure
The REPL keeps a history of the last few results printed by the REPL. The call
(repl-result-history-ref i) returns the ith previous result (the last for i=0,
the next to last for i=1, etc). By default the REPL result history remembers up to
3 results. The maximal length of the history can be set to n between 0 and 10 by a
call to (repl-result-history-max—length-set! n).

For convenience the reader defines an abbreviation for calling repl-result-
history-ref. Tokens formed by a sequence of one or more hash signs, such as ‘#’,
‘#4’, etc, are expanded by the reader into the list (repl-result-history-ref
1), where i is the number of hash signs minus 1. In other words, ‘#’ will return the
last result printed by the REPL, ‘#4#’ will return the next to last, etc.

For example:

> (map (lambda (x) (* x x)) "(1 2 3))
(1 4 9)

> (reverse #)

(9 4 1)

> (append # ##)

9 4 1 1 4 9)

1

=

(+ # #i#)

(+ # #i#)

(+ # ##)

H i

*** ERROR IN (console)@9.1 —-- (Argument 1) Out of range

(repl-result-history-ref 3)
1>

OV WV NV EVEV .~

\%

(trace proc...) procedure

(untrace proc...) procedure
The trace procedure starts tracing calls to the specified procedures. When a traced
procedure is called, a line containing the procedure and its arguments is displayed
(using the procedure call expression syntax). The line is indented with a sequence of
vertical bars which indicate the nesting depth of the procedure’s continuation. After
the vertical bars is a greater-than sign which indicates that the evaluation of the call
is starting.

When a traced procedure returns a result, it is displayed with the same indentation
as the call but without the greater-than sign. This makes it easy to match calls and
results (the result of a given call is the value at the same indentation as the greater-
than sign). If a traced procedure P1 performs a tail call to a traced procedure P2,
then P2 will use the same indentation as P1. This makes it easy to spot tail calls.
The special handling for tail calls is needed to preserve the space complexity of the
program (i.e. tail calls are implemented as required by Scheme even when they involve
traced procedures).

Chapter 5: Debugging 40

The untrace procedure stops tracing calls to the specified procedures. When no
argument is passed to the trace procedure, the list of procedures currently being
traced is returned. The void object is returned by the trace procedure when it
is passed one or more arguments. When no argument is passed to the untrace
procedure stops all tracing and returns the void object. A compiled procedure may
be traced but only if it is bound to a global variable.

For example:
> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (trace fact)
> (fact 5)
| > (fact 5)
| | > (fact 4)
| | | > (fact 3)
| | | | > (fact 2)
[I | | > (fact 1)
I T Y N A
[T)
I I | 6
\

| 24
| 120

120
> (trace -)

***x WARNING —-- Rebinding global variable "-" to an interpreted procedure
> (define (fact-iter n r) (if (< n 2) r (fact—-iter (- n l1l) (* n r))))
> (trace fact-iter)
> (fact—-iter 5 1)

| > (fact—iter 5 1)
\ > (=5 1)

\

\

\

\

\

\

\

\

\

\

\

\

fact—-iter 4 5)
(-4 1)

fact—-iter 3 20)
(- 3 1)

fact—-iter 2 60)
(-2 1)

fact—iter 1 120)

O ~F V ~NV ~WV . ~b>

|
|
>
|
|
>
|
|
>
|
|
>
1

N

120

> (trace)

(#<procedure #2 fact-iter> #<procedure #3 —-> #<procedure #4 fact>)
> (untrace)

> (fact 5)

120
(step) procedure
(step—-level-set! level) procedure

The step procedure enables single-stepping mode. After the call to step the com-
putation will stop just before the interpreter executes the next evaluation step (as
defined by step-level-set!). A nested REPL is then started. Note that because
single-stepping is stopped by the REPL whenever the prompt is displayed it is point-
less to enter (step) by itself. On the other hand entering (begin (step) expr)
will evaluate expr in single-stepping mode.

Chapter 5: Debugging 41

The procedure step—level-set ! sets the stepping level which determines the gran-
ularity of the evaluation steps when single-stepping is enabled. The stepping level
level must be an exact integer in the range 0 to 7. At a level of 0, the interpreter
ignores single-stepping mode. At higher levels the interpreter stops the computation
just before it performs the following operations, depending on the stepping level:

1. procedure call

delay special form and operations at lower levels
lambda special form and operations at lower levels
define special form and operations at lower levels

set ! special form and operations at lower levels

A T

variable reference and operations at lower levels

7. constant reference and operations at lower levels

The default stepping level is 7.

For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (step-level-set! 1)

> (begin (step) (fact 5))

*** STOPPED IN (console)@3.15

1> ,s

| > (fact 5)

**% STOPPED IN fact, (console)@1.22
1> ,s

| | > (< n 2)

| | #£

*** STOPPED IN fact, (console)@1.43
1> ,s

| | > (= n 1)

| | 4

**%* STOPPED IN fact, (console)@1.37
1> ,s

| | > (fact (- n 1))

*** STOPPED IN fact, (console)@1.22
1> ,s

I 1| > (<n 2)

I || #£

**%* STOPPED IN fact, (console)@1.43
1> ,s

[I | > (-=n 1)

I N

*** STOPPED IN fact, (console)@1l.37
1> ,1

[| | > (fact (- n 1))

*** STOPPED IN fact, (console)@1.22
1> ,1

I I > (* n (fact (- n 1)))

| | 24

*** STOPPED IN fact, (console)@1.32
1> ,1

| > (* n (fact (- n 1)))

| 120

120

Chapter 5: Debugging 42

(break proc...) procedure

(unbreak proc...) procedure
The break procedure places a breakpoint on each of the specified procedures. When
a procedure is called that has a breakpoint, the interpreter will enable single-stepping
mode (as if step had been called). This typically causes the computation to stop
soon inside the procedure if the stepping level is high enough.

The unbreak procedure removes the breakpoints on the specified procedures. With
no argument, break returns the list of procedures currently containing breakpoints.
The void object is returned by break if it is passed one or more arguments. With
no argument unbreak removes all the breakpoints and returns the void object. A
breakpoint can be placed on a compiled procedure but only if it is bound to a global
variable.

For example:
(define (double x) (+ x x))

Vv

> (define (triple y) (- (double (double y)) y))
> (define (f z) (* (triple z) 10))
> (break double)
> (break -)
**%* WARNING —-- Rebinding global variable "-" to an interpreted procedure
> (£ 5)
*** STOPPED IN double, (console)@1.21
1> ,b
0 double (console)@l:21 +
1 triple (console)@2:31 (double vy)
2 £ (console)@3:18 (triple z)
3 (interaction) (console)@6:1 (f 5)
1> ,e
x =5
1> ,c
**%* STOPPED IN double, (console)@l1.21
1> ,c
*** STOPPED IN f, (console)@3.29
1> ,c
150
> (break)
(#<procedure #3 —-> #<procedure #4 double>)
> (unbreak)
> (£ 5)
150
(generate-proper-tail-calls [new-value]) procedure

[Note: this procedure is DEPRECATED and will be removed in a future version of
Gambit. Use the ‘proper—-tail-calls’ declaration instead.]

The parameter object generate-proper—-tail-calls is bound to a boolean value
controlling how the interpreter handles tail calls. When it is bound to #f the inter-
preter will treat tail calls like nontail calls, that is a new continuation will be created
for the call. This setting is useful for debugging, because when a primitive signals an
error the location information will point to the call site of the primitive even if this
primitive was called with a tail call. The initial value of this parameter object is #t,
which means that a tail call will reuse the continuation of the calling function.

This parameter object only affects code that is subsequently processed by load or
eval, or entered at the REPL.

Chapter 5: Debugging 43

For example:
> (generate-proper-tail-calls)

#t

> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))

*** FERROR IN #<procedure #2>, (console)@2.47 —-- Unbound variable: oops

1> ,b

0 f#<procedure #2> (console)@2:47 oops

1 (interaction) (console)@2:1 ((letrec ((loop (lambda..
1> ,t

> (generate-proper-tail-calls #f)
> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))

*** FRROR IN f#<procedure #3>, (console)@6.47 —- Unbound variable: oops

1> ,b

0 #<procedure #3> (console)@6:47 oops

1 #<procedure #3> (console)@6:32 (loop (* 1 2))

2 f#<procedure #3> (console)@6:32 (loop (* 1 2))

3 #<procedure #3> (console)@6:32 (loop (* 1 2))

4 f#<procedure #3> (console)@6:32 (loop (* 1 2))

5 (interaction) (console)@6:1 ((letrec ((loop (lambda..
(display-environment-set! display?) procedure

[Note: this procedure is DEPRECATED and will be removed in a future version of
Gambit. Use the parameter object repl-display-environment? instead.]

This procedure sets a flag that controls the automatic display of the environment by
the REPL. If display? is true, the environment is displayed by the REPL before the
prompt. The default setting is not to display the environment.

(repl-display-environment? display?) procedure
The parameter object repl-display-environment? is bound to a boolean value
that controls the automatic display of the environment by the REPL. If display? is
true, the environment is displayed by the REPL before the prompt. This is par-
ticularly useful in single-stepping mode. The default setting is not to display the
environment.

(display-dynamic-environment? display?) procedure
The parameter object display—-dynamic—-environment? is bound to a boolean
value that controls wether the dynamic environment is displayed when the environ-
ment is displayed. The default setting is not to display the dynamic environment.

(pretty-print obj [port]) procedure
This procedure pretty-prints obj on the port port. If it is not specified, port defaults
to the current output-port.

For example:
> (pretty—-print
(let* ((x "(1 2 3 4)) (y (list x x x))) (list y y ¥)))
(((L 2 3 4) (1 2 3 4) (1 2 3 4))
((L 2 3 4) (1L 2 3 4) (1 2 3 4))
((L 23 4) (1 23 4) (1L 2 3 4)))

(pp obj [port]) procedure
This procedure pretty-prints obj on the port port. When obj is a procedure created
by the interpreter or a procedure created by code compiled with the declaration

Chapter 5: Debugging 44

‘debug-source’, the procedure’s source code is displayed. If it is not specified, port
defaults to the interaction channel (i.e. the output will appear at the REPL).

For example:
> (define (f g) (+ (time (g 100)) (time (g 1000))))

> (pp £)
(lambda (qg)
(+ (##time (lambda () (g 100)) " (g 100))
(##time (lambda () (g 1000)) ' (g 1000))))
(gc—report—-set! report?) procedure

This procedure controls the generation of reports during garbage collections. If the
argument is true, a brief report of memory usage is generated after every garbage
collection. It contains: the time taken for this garbage collection, the amount of
memory allocated in megabytes since the program was started, the size of the heap
in megabytes, the heap memory in megabytes occupied by live data, the proportion
of the heap occupied by live data, and the number of bytes occupied by movable and
nonmovable objects.

5.5 Console line-editing

The console implements a simple Scheme-friendly line-editing user-interface that is enabled
by default. It offers parentheses balancing, a history of previous commands, symbol com-
pletion, and several emacs-compatible keyboard commands. The user’s input is displayed
in a bold font and the output produced by the system is in a plain font. The history of pre-
vious commands is saved in the file ‘7/.gambit_history’. It is restored when a REPL
is started.

Symbol completion is triggered with the tab key. When the cursor is after a sequence of
characters that can form a symbol, typing the tab key will search the symbol table for the
first symbol (in alphabetical order) that begins with that sequence and insert that symbol.
Typing the tab key in succession will cycle through all symbols with that prefix. When all
possible symbols have been shown or there are no possible completions, the text reverts to
the uncompleted symbol and the bell is rung.

Here are the keyboard commands available (where the ‘M-’ prefix means the escape key
is typed and the ‘C-’ prefix means the control key is pressed):

c-d Generate an end-of-file when the line is empty, otherwise delete charac-
ter at cursor.

delete or backspace
Delete character before cursor.

M-C-d Delete word forward and keep a copy of this text on the clipboard.

M-delete Delete word backward and keep a copy of this text on the clipboard.

M-backspace Delete S-expression backward and keep a copy of this text on the clip-
board.

C-a Move cursor to beginning of line.

C-e Move cursor to end of line.

Chapter 5: Debugging 45

C-b or left-arrow Move cursor left one character.
M-b Move cursor left one word.

M-C-b or M-left-arrow
Move cursor left one S-expression.

C—f or right-arrow
Move cursor right one character.

M-f Move cursor right one word.

M-C-f or M-right-arrow
Move cursor right one S-expression.

C—p or M—p or up-arrow
Move to previous line in history.

C—n or M—n or down-arrow
Move to next line in history.

C-t Transpose character at cursor with previous character.

M-t Transpose word after cursor with previous word.

M-C-t Transpose S-expression after cursor with previous S-expression.

c-1 Clear console and redraw line being edited.

C-nul Set the mark to the cursor.

C-w Delete the text between the cursor and the mark and keep a copy of

this text on the clipboard.

C-k Delete the text from the cursor to the end of the line and keep a copy
of this text on the clipboard.

C-y Paste the text that is on the clipboard.

F8 Same as typing ‘# | | #, c;’ (REPL command to continue the computa-
tion).

F9 Same as typing ‘4| | #, —;’ (REPL command to move to newer frame).

F10 Same as typing ‘#| | #, +;’ (REPL command to move to older frame).

F11 Same as typing ‘#| | #, s;’ (REPL command to step the computation).

Fl12 Same as typing ‘# | | #, 1;’ (REPL command to leap the computation).

On macOS, depending on your configuration, you may have to press the £n key to access
the function key F12 and the option key to access the other function keys.

On Microsoft Windows the clipboard is the system clipboard. This allows text to be
copied and pasted between the program and other applications. On other operating systems
the clipboard is internal to the program (it is not integrated with the operating system).

Chapter 5: Debugging 46

5.6 Emacs interface

Gambit comes with the Emacs package ‘gambit.el’ which provides a nice environment
for running Gambit from within the Emacs editor. This package filters the standard out-
put of the Gambit process and when it intercepts a location information (in the format
‘stream@line.column’ where stream is either ‘ (stdin)’ when the expression was ob-
tained from standard input, ‘ (console)’ when the expression was obtained from the con-
sole, or a string naming a file) it opens a window to highlight the corresponding expression.

To use this package, make sure the file ‘gambit.el’ is accessible from your load-path
and that the following lines are in your ‘. emacs’ file:

(autoload ’"gambit-inferior-mode "gambit" "Hook Gambit mode into cmuscheme.")

(autoload ’'gambit-mode "gambit" "Hook Gambit mode into scheme.")
(add-hook ’inferior-scheme-mode-hook (function gambit-inferior-mode))
(add-hook ’scheme-mode—hook (function gambit-mode))

(setg scheme-program-name "gsi -:debug=-")

Alternatively, if you don’t mind always loading this package, you can simply add this
line to your ‘.emacs’ file:

(require ’'gambit)

You can then start an inferior Gambit process by typing ‘M-x run—-scheme’. The
commands provided in ‘cmuscheme’ mode will be available in the Gambit interaction
buffer (i.e. ‘*scheme*’) and in buffers attached to Scheme source files. Here is a list of the
most useful commands (for a complete list type ‘C—h m’ in the Gambit interaction buffer):

C-x C-e Evaluate the expression which is before the cursor (the expression will
be copied to the Gambit interaction buffer).

C-c C-z Switch to Gambit interaction buffer.

C-cC-1 Load a file (file attached to current buffer is default) using (load
file).

C-c C-k Compile a file (file attached to current buffer is default) using

(compile—-file file).

The file ‘gambit .el’ provides these additional commands:

F8 or C-c c Continue the computation (same as typing ‘#| | #, c;’ to the REPL).
F9 or C-c] Move to newer frame (same as typing ‘# | | #, —;’ to the REPL).
F10 or C-c [Move to older frame (same as typing ‘# | | #, +;’ to the REPL).

F11l or C-c s Step the computation (same as typing ‘4| | #, s;’ to the REPL).
F12 or C-c 1 Leap the computation (same as typing ‘# | | #, 1;’ to the REPL).
C-c _ Removes the last window that was opened to highlight an expression.
The two keystroke version of these commands can be shortened to ‘M-c’, ‘M-[’, ‘M—-]",
‘M-s’, ‘M-1’, and ‘M—_’ respectively by adding this line to your ‘.emacs’ file:
(setqg gambit-repl-command-prefix "\e")

This is more convenient to type than the two keystroke ‘C—c’ based sequences but the
purist may not like this because it does not follow normal Emacs conventions.

Here is what a typical ‘.emacs’ file will look like:

Chapter 5: Debugging 47

(setq load-path ; add directory containing gambit.el
(cons "/usr/local/Gambit/share/emacs/site-1isp"

load-path))
(setg scheme-program—-name "/tmp/gsi -:debug=-") ; if gsi not in exe-—
cutable path
(setq gambit-highlight-color "gray") ; if you don’t like the default
if you want M-c, M-s, etc

(setg gambit-repl-command-prefix "\e") ;
(require ’'gambit)

5.7 GUIDE

The implementation and documentation for GUIDE, the Gambit Universal IDE, are not

yet complete.

Chapter 6: Scheme extensions 48

6 Scheme extensions

6.1 Extensions to standard procedures

(transcript-on file) procedure
(transcript-off) procedure
These procedures do nothing.

(call-with-current-continuation proc) procedure

(call/cc proc) procedure
The procedure call-with-current—-continuation is bound to the global vari-
ables call-with-current-continuation and call/cc.

6.2 Extensions to standard special forms

(lambda lambda-formals body) special form
(define (variable define-formals) body) special form
lambda-formals = (formal-argument-list) | r4rs-lambda-formals

define-formals = formal-argument-list | r4rs-define-formals

formal-argument-list = dsssl-formal-argument-list | rest-at-end-formal-
argument-list

dsssl-formal-argument-list = reqs opts rest keys

rest-at-end-formal-argument-list = reqs opts keys rest | reqs opts keys . rest-
formal-argument

reqs = required-formal-argument®
required-formal-argument = variable
opts = #!optional optional-formal-argument™ | empty
optional-formal-argument = wvariable | (variable initializer)
rest = # ! rest rest-formal-argument | empty
rest-formal-argument = variable
keys = #'key keyword-formal-argument™® | empty
keyword-formal-argument = variable | (variable initializer)
iitializer = expression
r4rs-lambda-formals = (variable®*) | (variable+ . variable) | wvariable
r4rs-define-formals = variable®™ | variable® . variable
These forms are extended versions of the 1ambda and define special forms of stan-

dard Scheme. They allow the use of optional formal arguments, either positional or
named, and support the syntax and semantics of the DSSSL standard.

When the procedure introduced by a lambda (or define) is applied to a list of
actual arguments, the formal and actual arguments are processed as specified in the
R4RS if the lambda-formals (or define-formals) is a r4rs-lambda-formals (or r4rs-
define-formals).

If the formal-argument-list matches dsssi-formal-argument-list or extended-formal-
argument-list they are processed as follows:

Chapter 6: Scheme extensions 49

a. Variables in required-formal-arguments are bound to successive actual arguments
starting with the first actual argument. It shall be an error if there are fewer
actual arguments than required-formal-arguments.

b. Next wvariables in optional-formal-arguments are bound to remaining actual ar-
guments. If there are fewer remaining actual arguments than optional-formal-
arguments, then the variables are bound to the result of evaluating initializer,
if one was specified, and otherwise to #f. The initializer is evaluated in an
environment in which all previous formal arguments have been bound.

c. If #!key does not appear in the formal-argument-list and there is no rest-formal-
argument then it shall be an error if there are any remaining actual arguments.

d. If #!key does not appear in the formal-argument-list and there is a rest-formal-
argument then the rest-formal-argument is bound to a list of all remaining actual
arguments.

e. If #!key appears in the formal-argument-list and there is no rest-formal-
argument then there shall be an even number of remaining actual arguments.
These are interpreted as a series of pairs, where the first member of each pair is
a keyword specifying the argument name, and the second is the corresponding
value. It shall be an error if the first member of a pair is not a keyword. It
shall be an error if the argument name is not the same as a variable in a
keyword-formal-argument. If the same argument name occurs more than once
in the list of actual arguments, then the first value is used. If there is no actual
argument for a particular keyword-formal-argument, then the variable is bound
to the result of evaluating initializer if one was specified, and otherwise to #f.
The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

f. If # ! key appears in the formal-argument-list and there is a rest-formal-argument
before the # ! key then there may be an even or odd number of remaining actual
arguments and the rest-formal-argument is bound to a list of all remaining actual
arguments. Then, these remaining actual arguments are scanned from left to
right in pairs, stopping at the first pair whose first element is not a keyword.
Each pair whose first element is a keyword matching the name of a keyword-
formal-argument gives the value (i.e. the second element of the pair) of the
corresponding formal argument. If the same argument name occurs more than
once in the list of actual arguments, then the first value is used. If there is no
actual argument for a particular keyword-formal-argument, then the variable is
bound to the result of evaluating initializer if one was specified, and otherwise to
#£. The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

g. If # ' key appears in the formal-argument-list and there is a rest-formal-argument
after the #!key then there may be an even or odd number of remaining actual
arguments. The remaining actual arguments are scanned from left to right in
pairs, stopping at the first pair whose first element is not a keyword. Each
pair shall have as its first element a keyword matching the name of a keyword-
formal-argument; the second element gives the value of the corresponding formal
argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for

Chapter 6: Scheme extensions 50

a particular keyword-formal-argument, then the variable is bound to the result
of evaluating initializer if one was specified, and otherwise to #£. The initializer
is evaluated in an environment in which all previous formal arguments have
been bound. Finally, the rest-formal-argument is bound to the list of the actual
arguments that were not scanned (i.e. after the last keyword/value pair).

In all cases it is an error for a variable to appear more than once in a formal-argument-
list.

Note that this specification is compatible with the DSSSL language standard (i.e. a
correct DSSSL program will have the same semantics when run with Gambit).

It is unspecified whether variables receive their value by binding or by assignment.
Currently the compiler and interpreter use different methods, which can lead to dif-
ferent semantics if call-with-current—-continuation is used in an initializer.
Note that this is irrelevant for DSSSL programs because call-with-current-—
continuation does not exist in DSSSL.

For example:

> ((lambda (#'rest x) x) 1 2 3)
(1 2 3)
> (define (f a #'!optional b) (list a b))
> (define (g a #!optional (b a) #!'key (k (* a b))) (list a b k))
> (define (hl a #!rest r #!key k) (list a k r))
(define (h2 a #'key k #!rest r) (list a k r))
(£ 1)
1 #f£)
(£ 1 2)
1 2)
(g 3)
33 9)
(g 3 4)
3 4 12)
(g 3 4 k: 5)
3 4°5)
(g 3 4k: 5 k: 6)
3 4 5)
(hl 7)
7T #E ()
(hl1 7 k: 8 9)
7 8 (k: 8 9))
(hl1 7 k: 8 z: 9)
7 8 (k: 8 z: 9))
(h2 7)
7 #E ()
(h2 7 k: 8 9)
(7 8 (9))
> (h2 7 k: 8 z: 9)
***% ERROR IN (console)@1l7.1 —-- Unknown keyword argument passed to procedure
(h2 7 k: 8 z: 9)

>
>
(
>
(
>
(
>
(
>
(
>
(
>
(
>
(
>
(
>
(
>

Chapter 6: Scheme extensions 51

6.3 Miscellaneous extensions

(subvector vector start end) procedure
This procedure is the vector analog of the substring procedure. It returns a newly
allocated vector formed from the elements of the vector vector beginning with index
start (inclusive) and ending with index end (exclusive).

For example:

> (subvector '"#(a b c d e £) 3 5)
#(d e)

(vector—copy vector [start [end]]) procedure
This procedure is like the procedure subvector except the parameter start defaults
to 0 and the parameter end defaults to the length of the vector vector. Note that the
elements are not recursively copied.

For example:

> (define vl "#(a b c d e £f))
> (define v2 (vector-copy vl))
> v2

#(a b cde 1)

> (eq? vl v2)

#f

> (vector—copy v1 3)

#(d e f)

> (vector—copy vl 3 5)

#(d e)

(vector—copy! dest-vector dest-start vector [start [end]]) procedure
This procedure mutates the vector dest-vector. It copies the elements of the vector
vector beginning with index start (inclusive) and ending with index end (exclusive)
to the vector dest-vector at index dest-start. The parameters start and end default
respectively to 0 and the length of the vector vector. It is an error to copy more
elements than will fit in the tail of the vector dest-vector starting at index dest-start.
Note that the elements are not recursively copied.

For example:

(define vl (vector 10 11 12 13 14 15))
> (define v2 (vector 20 21 22 23))
> (vector—copy! vl 1 v2)

> vl

#(10 20 21 22 23 15)

> (vector—-copy! vl 1 v2 3)

> vl

#(10 23 21 22 23 15)

> (vector-copy! vl 1 v2 1 3)

> vl

#(10 21 22 22 23 15)

\

(vector—append vector. . .) procedure
This procedure is the vector analog of the st ring—append procedure. It returns a
newly allocated vector whose elements form the concatenation of the given vectors.

For example:

Chapter 6: Scheme extensions 52

> (define v "#(1 2 3))
> (vector—-append v v V)
#(1 2 31 2 31 2 3)

(vector—concatenate Ist [separator]) procedure
This procedure returns a newly allocated vector whose elements form the concate-
nation of all the vectors in the list Ist. If the optional vector separator argument
is specified, it will be added between all the elements of Ist. Without the separator
argument the result is the same as (apply vector-append Ist).

For example:

> (define v "#(1 2 3))

> (vector—-concatenate (list v v v))

#(1 2 31 2312 3)

> (vector-concatenate (list v v v) ’'#(88 99))
#(1 2 388 991 2 388 99 1 2 3)

(subvector—£fill! vector start end fill) procedure
This procedure is like vector-£fi11!, but fills a selected part of the given vector.
It sets the elements of the vector vector, beginning with index start (inclusive) and
ending with index end (exclusive) to fill. The value returned is unspecified.

For example:

> (define v (vector 'a 'b 'c ’'d ‘e 'f))
> (subvector-£fill! v 3 5 ’x)

> v

#f(a bcx x f)

(subvector—-move! src-vector src-start src-end dst-vector dst-start) procedure
This procedure replaces part of the contents of vector dst-vector with part of the
contents of vector src-vector. It copies elements from src-vector, beginning with index
sre-start (inclusive) and ending with index src-end (exclusive) to dst-vector beginning
with index dst-start (inclusive). The value returned is unspecified.

For example:
> (define vl "#(1 2 3 4 5 6))
> (define v2 (vector 'a 'b 'c ’'d ‘e 'f))
> (subvector-move! vl 3 5 v2 1)
> v2
#(a 4 5 d e f)

(vector—shrink! wvector k) procedure
This procedure shortens the vector vector so that its new size is k. The value returned
is unspecified.

For example:
> (define v (vector 'a 'b 'c ’'d e 'f))
> v
#(a b cde f)
> (vector-shrink! v 3)

> v
#(a b c)
(vector—cas! vector k new-value old-value) procedure

The procedure vector—cas! performs an atomic compare-and-swap operation on
the element of vector vector at index k. If the element’s value is eq? to old-value then

Chapter 6: Scheme extensions 53

the element is changed to new-value, otherwise the value does not change. Regardless
what happened, the element’s value prior to any change is returned. It is thus possible
to detect a change by an explicit eq? test of the result.

For example:

> (define v (vector ’'a))

> (eq? ’'foo (vector-cas! v 0 'b ’"foo0))
#f

> v

#(a)

> (eqg? ’'a (vector-cas! v 0 'b ’a))

#t

> v

#(b)

(vector—inc! vector k [step]) procedure
The procedure vector—inc! performs an atomic incrementation on the element of
vector vector at index k, which must be a fixnum. The parameter step defaults to
1 and it is the fixnum value that is added (with wraparound) to the element. The
procedure returns the value of the element prior to the incrementation.

For example:

> (define v (vector 100))
> (vector-inc! v 0)

100

> (vector-inc! v 0)

101

> (vector-inc! v 0 5)

102

> v

#(107)

(vector—-set vector k obj) procedure
The procedure vector—set returns a new copy of the vector vector with the element
at index k replaced with obj.

For example:

> (define v1 (vector 10 11 12 13))
> (define v2 (vector-set vl 2 99))
> v2

#(10 11 99 13)

> (eq? vl v2)

#f

(string-set string k char) procedure
The procedure st ring—set returns a new copy of the string string with the character
at index k replaced with char.

For example:

> (define sl (string #\a #\b #\c #\d))
> (define s2 (string-set sl 2 #\.))

> s2

"ab.d"

> (eq? sl s2)

#f

Chapter 6: Scheme extensions 54

(string-concatenate Ist [separator]) procedure

This procedure returns a newly allocated string which is the concatenation of all the
strings in the list Ist. If the optional string separator argument is specified, it will be
added between all the elements of Ist. Without the separator argument the result is
the same as (apply string-append Ist).

For example:
> (define s "abc")
> (string—-concatenate (list s s s))
"abcabcabc"
> (string—-concatenate (list s s s) ",")
"abc, abc, abc"

(substring-fill! string start end fill) procedure

This procedure is like string—fill!, but fills a selected part of the given string.
It sets the elements of the string string, beginning with index start (inclusive) and
ending with index end (exclusive) to fill. The value returned is unspecified.

For example:

> (define s (string #\a #\b #\c #\d #\e #\£))
> (substring—-£fill! s 3 5 #\x)

> s

"abcxxf"

(substring-move! src-string src-start src-end dst-string dst-start) procedure

This procedure replaces part of the contents of string dst-string with part of the
contents of string src-string. It copies elements from src-string, beginning with index
sre-start (inclusive) and ending with index src-end (exclusive) to dst-string beginning
with index dst-start (inclusive). The value returned is unspecified.

For example:

> (define sl "123456")

> (define s2 (string #\a #\b #\c #\d #\e #\f))
> (substring-move! sl 3 5 s2 1)

> s2

"a45def"

(string-shrink! string k) procedure

(
(
(
(

This procedure shortens the string string so that its new size is k. The value returned
is unspecified.
For example:

> (define s (string #\a #\b #\c #\d #\e #\£f))

> s

"abcdef"

> (string-shrink! s 3)

> s

"abC"
box obj) procedure
box? obj) procedure
unbox box) procedure
set-box! box obj) procedure

These procedures implement the box data type. A box is a cell containing a single
mutable field. The lexical syntax of a box containing the object obj is #&obj (see
Section 15.7 [Box syntax], page 234).

Chapter 6: Scheme extensions 55

The procedure box returns a new box object whose content is initialized to obj. The
procedure box? returns #t if obj is a box, and otherwise returns #f. The procedure
unbox returns the content of the box box. The procedure set-box! changes the
content of the box box to obj. The procedure set-box! returns an unspecified
value.

For example:
> (define b (box 0))
> b
#6&0
> (define (inc!) (set-box! b (+ (unbox b) 1)))
> (inc!)
> b
#&1
> (unbox b)
1

(keyword? obj) procedure

(keyword->string keyword) procedure

(string—>keyword string) procedure
These procedures implement the keyword data type. Keywords are similar to symbols
but are self evaluating and distinct from the symbol data type. The lexical syntax of
keywords is specified in Section 15.6 [Keyword syntax], page 233.

The procedure keyword? returns #t if obj is a keyword, and otherwise returns #f£.
The procedure keyword—->string returns the name of keyword as a string. The
procedure string—->keyword returns the keyword whose name is string.

For example:

> (keyword? ’color)

#f

> (keyword? color:)

#t

> (keyword->string color:)
"color"

> (string->keyword "color")
color:

(gensym [prefix]) procedure
This procedure returns a new uninterned symbol. Uninterned symbols are guaranteed
to be distinct from the symbols generated by the procedures read and string-
>symbol. The symbol prefix is the prefix used to generate the new symbol’s name.
If it is not specified, the prefix defaults to ‘g’.

For example:

> (gensym)
: g0
(gensym)
:gl
(gensym ’star-trek-)
:star—-trek-2

=V o# Vo

(string->uninterned-symbol name [hash]) procedure

Chapter 6: Scheme extensions 56

(uninterned-symbol? obj) procedure
The procedure string->uninterned-symbol returns a new uninterned symbol
whose name is name and hash is hash. The name must be a string and the hash must
be a nonnegative fixnum.

The procedure uninterned-symbol? returns #t when obj is a symbol that is
uninterned and #f otherwise.

For example:
> (uninterned-symbol? (gensym))

#t

> (string->uninterned-symbol "foo")

#:foo:

> (uninterned-symbol? (string—->uninterned-symbol "foo"))

#t

> (uninterned-symbol? ’'hello)

#£

> (uninterned-symbol? 123)

#£
(string->uninterned-keyword name [hash|) procedure
(uninterned-keyword? obj) procedure

The procedure string->uninterned-keyword returns a new uninterned keyword
whose name is name and hash is hash. The name must be a string and the hash must
be a nonnegative fixnum.

The procedure uninterned-keyword? returns #t when obj is a keyword that is
uninterned and #f otherwise.

For example:

> (string->uninterned-keyword "foo")

#:foo:

> (uninterned-keyword? (string->uninterned-keyword "foo"))
#t

> (uninterned-keyword? hello:)

#£

> (uninterned-keyword? 123)

#£

(identity obj) procedure
This procedure returns obj.

(void) procedure
This procedure returns the void object. The read-eval-print loop prints nothing when
the result is the void object.

(eval expr [env]) procedure
The first parameter is a datum representing an expression. The eval procedure
evaluates this expression in the global interaction environment and returns the result.
If present, the second parameter is ignored (it is provided for compatibility with
R5RS).

For example:
> (eval " (+ 1 2))
3
> ((eval ’'car) ' (1 2))

Chapter 6: Scheme extensions 57

(eval ’ (define x 5))
x

[GIAVERVAR S

(define-macro (name define-formals) body) special form
Define name as a macro special form which expands into body. This form can only
appear where a define form is acceptable. Macros are lexically scoped. The scope
of a local macro definition extends from the definition to the end of the body of the
surrounding binding construct. Macros defined at the top level of a Scheme module
are only visible in that module. To have access to the macro definitions contained in
a file, that file must be included either directly using the include special form or
indirectly with the import special form. Macros which are visible from the REPL
are also visible during the compilation of Scheme source files.

For example:

(define-macro (unless test . body)
‘(1f ,test #f (begin ,@body)))

(define-macro (push var #!optional wval)
‘(set! ,var (cons ,val ,var)))
To examine the code into which a macro expands you can use the compiler’s
‘—expansion’ option or the pp procedure. For example:
> (define-macro (push var #!optional val)
‘(set! ,var (cons ,val ,var)))
> (pp (lambda () (push stack 1) (push stack) (push stack 3)))
(lambda ()
(set! stack (cons 1 stack))

(set! stack (cons #f stack))
(set! stack (cons 3 stack)))

(define-syntax name expander) special form
Define name as a macro special form whose expansion is specified by expander. This
form is available only when the runtime option ‘—:s’ is used. This option causes
the loading of the "~"1ib/syntax—case support library, which is the Hieb and
Dybvig portable syntax—case implementation which has been ported to the Gambit
interpreter and compiler. Note that this implementation of syntax—case does not
support special forms that are specific to Gambit.

For example:

$ gsi -:s
Gambit v4.9.4

> (define-syntax unless
(syntax-rules ()
((unless test body ...)
(if test #f (begin body ...)))))
> (let ((test 111)) (unless (= 1 2) (list test test)))

(111 111)
> (pp (lambda () (let ((test 111)) (unless (= 1 2) (list test test)))))
(lambda () ((lambda (%%testl4) (if (= 1 2) #f (list %%testld %$S%testld))) 111))

> (unless #f (pp xxx))
*** ERROR IN (console)@7.16 ——- Unbound variable: xxx

Chapter 6: Scheme extensions 58

(compilation-target) procedure
This procedure can only be executed during the phase of the Scheme code’s process-
ing (compilation) that corresponds to macro expansion. Calls to this procedure are
typically contained in macro definitions but they can also be contained in procedures
that are called from a macro definition’s body directly or indirectly.

The result returned by the compilation—-target procedure gives an indication of
the target language of the compilation. This can be used to write macros that depend
on the type of compilation and the target language.

When the result is the symbol T the macro expansion is in the context of compiling
to the target language T, e.g. C, js, etc. When the result is a single element list (T)
the macro expansion is for the interpreter which itself was compiled for the target
language T, e.g. (C), (Js), etc.

For example:
$ cat ct.scm
(define (level-0)
(string—append "O0: " (object->string (compilation-target))))

(define-macro (test)

(define (level-1)
(string-append "1: " (object->string (compilation-target))))

(define—-macro (level-2)
(string-append "2: " (object->string (compilation-target))))

‘(list , (level-1) , (level-2)))

(pp (test))

(pp (level-0)) ;; run time exception

$ gsi ct.scm

("l: (C) n "2: (C) ")

*%% ERROR IN level-0, "ct.scm"@2.40 -- Not in compilation context

(compilation—-target)
$ gsc —-target Jjs —-exe ct.scm

$./ct
("l: jS" "2: (c) ")
*%% ERROR IN level-0 -- Not in compilation context

(compilation-target)

Regardless of whether ‘ct.scm’ is being processed by the interpreter or the com-
piler, the body of the 1evel-0 procedure is not in a compilation context and in the
body of the 1evel-2 macro the compilation target is (C) indicating that the macro
expansion is being done for interpretation.

During the execution of the 1evel-1 procedure, the compilation target will corre-
spond to what is processing ‘ct . scm’ (interpreter or compiler).

Note that the compilation target can also be tested by the cond-expand special
form.

Chapter 6: Scheme extensions 59

(cond-expand ce-clause .. .) special form
The cond-expand expression type provides a way to statically expand different
expressions depending on the presence or absence of a set of features. A ce-clause
takes the following form:

(feature-requirement expression . ..)
The last clause can be an “else clause,” which has the form
(else expression)
A feature-requirement takes one of the following forms:
e feature-identifier
e (library library—-name)

e (and feature-requirement ...)

(

e (or feature-requirement ...)
(not feature-requirement)
(

e (compilation-target target ...)

The runtime system maintains a list of feature identifiers which are present, as well as
a list of libraries which can be imported. The value of a feature-requirement is deter-
mined by replacing each feature—identifier and (library library—-name)
on the runtime system’s lists with #t. Similarly, #t replaces each (compilation-
target target ...) for which one of the target matches the expansion time value
of (compilation-target), with a target of (_) matching any single element
list (i.e. the interpreter). All other feature-identifier, (library library-
name), and (compilation-target target ...) are replaced with #f. The re-
sulting expression is then evaluated as a Scheme boolean expression under the normal
interpretation of and, or, and not.

A cond-expand is then expanded by evaluating the feature-requirements of succes-
sive ce-clauses in order until one of them returns #t. When a true clause is found,
the corresponding expressions are expanded to a begin, and the remaining clauses
are ignored. If none of the feature-requirements evaluate to #t, then if there is an
else clause, its expressions are included. Otherwise, an expansion time error is raised.
Unlike cond, cond-expand does not depend on the value of any variables.

The feature identifier gambit is always true when the cond-expand is expanded
by the Gambit interpreter or compiler.
For example:

> (cond—expand (foobar 111) (gambit 222) (else 333))

222

> (cond—expand ((compilation—-target js) 111) (else 222))

222

> (cond—expand ((compilation—-target (_)) 111) (else 222))

111

(define-cond-expand-feature feature-identifier . ..) special form

The define-cond-expand-feature form can be used to add the feature identi-
fiers feature-identifier ... to the list of features maintained by the runtime system.

These features are usable for the expansion of following cond-expand forms in the
same file of source code, and the processing of other files and REPL interactions.

Chapter 6: Scheme extensions 60

For example:

> (cond—expand (foobar 111) (gambit 222) (else 333))

222

> (define-cond-expand-feature foobar)
> (cond—-expand (foobar 111) (gambit 222) (else 333))

111

(declare declaration. . .) special form
This form introduces declarations to be used by the compiler (currently the inter-
preter ignores the declarations). This form can only appear where a define form
is acceptable. Declarations are lexically scoped in the same way as macros. The
following declarations are accepted by the compiler:

(dialect)

(strategy)

([not] inline)

Use the given dialect’s semantics. dialect can be:
‘ieee—scheme’, ‘rdrs—scheme’, ‘rSrs—scheme’ or
‘gambit-scheme’.

Select block compilation or separate compilation. In block com-
pilation, the compiler assumes that global variables defined in the
current file that are not mutated in the file will never be mutated.
strategy can be: ‘block’ or ‘separate’.

Allow (or disallow) inlining of user procedures.

([not] inline-primitives primitive...)

The given primitives should (or should not) be inlined if possible
(all primitives if none specified).

(inlining-limit n)

Select the degree to which the compiler inlines user procedures. n
is the upper-bound, in percent, on code expansion that will result
from inlining. Thus, a value of 300 indicates that the size of the
program will not grow by more than 300 percent (i.e. it will be
at most 4 times the size of the original). A value of 0 disables
inlining. The size of a program is the total number of subexpres-
sions it contains (i.e. the size of an expression is one plus the size
of its immediate subexpressions). The following conditions must
hold for a procedure to be inlined: inlining the procedure must
not cause the size of the call site to grow more than specified by
the inlining limit, the site of definition (the define or lambda)
and the call site must be declared as (inline), and the com-
piler must be able to find the definition of the procedure referred
to at the call site (if the procedure is bound to a global variable,
the definition site must have a (block) declaration). Note that
inlining usually causes much less code expansion than specified
by the inlining limit (an expansion around 10% is common for
n=370).

(allocation-1limit n)

Indicate the maximum size of objects allocated with make-
vector, make-string, make-u8vector, etc. Knowing

Chapter 6: Scheme extensions 61

the maximum size allows the compiler to inline calls to these
allocators for small allocations. This is only supported by the
C target and only up to a size that is allowed for mowable
objects (typically on the order of 1-2 KB). When n is an exact
nonnegative integer it is the upper-bound on the number of
elements of the allocated objects. When n is #t a dynamic test
of the size is done. When n is #£f the allocation operation is not
inlined.

([not] lambda-11ift)
Lambda-lift (or don’t lambda-lift) locally defined procedures.

([not] constant-fold)
Allow (or disallow) constant-folding of primitive procedures.

([not] standard-bindings var...)
The given global variables are known (or not known) to be equal
to the value defined for them in the dialect (all variables defined
in the standard if none specified).

([not] extended-bindings var...)
The given global variables are known (or not known) to be equal
to the value defined for them in the runtime system (all variables
defined in the runtime if none specified).

([not] run-time-bindings var. ..
The given global variables will be tested at run time to see if they
are equal to the value defined for them in the runtime system (all
variables defined in the runtime if none specified).

([not] safe) Generate (or don’t generate) code that will prevent fatal errors at
run time. Note that in ‘safe’ mode certain semantic errors will
not be checked as long as they can’t crash the system. For example
the primitive char=? may disregard the type of its arguments in
‘safe’ as well as ‘not safe’ mode.

([not] interrupts-enabled)
Generate (or don’t generate) interrupt checks. Interrupt checks
are used to detect user interrupts and also to check for stack
overflows. Interrupt checking should not be turned off casually.

([not] poll-on-return)
Generate (or don’t generate) interrupt checks on procedure re-
turns (when interrupt checking is enabled). This declaration has
no effect on the behavior of interrupt checking on procedure calls,
which is needed to guarantee that stack overflows are handled
properly.

([not] debug) Enable (or disable) the generation of debugging information.
The kind of debugging information that is generated depends on
the declarations ‘debug-location’, ‘debug-source’, and
‘debug-environments’. If any of the command line options

Chapter 6: Scheme extensions 62

‘~debug’, ‘-debug-location’, ‘-debug-source’ and
‘~debug-environments’ are present, the ‘debug’ declaration
is initially enabled, otherwise it is initially disabled. ~When
all kinds of debugging information are generated there is a
substantial increase in the C compilation time and the size of the
generated code. When compiling a 3000 line Scheme file it was
observed that the total compilation time is 500% longer and the
executable code is 150% bigger.

([not] debug-location)

Select (or deselect) source code location debugging information.
When this declaration and the ‘debug’ declaration are in
effect, run time error messages indicate the location of the error
in the source code file. If any of the command line options
‘~debug-source’ and ‘-debug-environments’ are present
and ‘-debug-location’ is absent, the ‘debug-location’
declaration is initially disabled, otherwise it is initially enabled.
When compiling a 3000 line Scheme file it was observed that the
total compilation time is 200% longer and the executable code is
60% bigger.

([not] debug-source)

Select (or deselect) source code debugging information. When
this declaration and the ‘debug’ declaration are in effect, run
time error messages indicate the source code, the backtraces are
more precise, and the pp procedure will display the source code
of compiled procedures. If any of the command line options
‘~debug-location’ and ‘-debug-environments’ are
present and ‘—~debug-source’ is absent, the ‘debug-source’
declaration is initially disabled, otherwise it is initially enabled.
When compiling a 3000 line Scheme file it was observed that the
total compilation time is 90% longer and the executable code is
90% bigger.

([not] debug-environments)

Select (or deselect) environment debugging information. When
this declaration and the ‘debug’ declaration are in effect,
the debugger will have access to the environments of the
continuations. In other words the local variables defined
in compiled procedures (and not optimized away by the
compiler) will be shown by the ‘,e’ REPL command. If
any of the command line options ‘-debug-location’ and
‘—~debug-source’ are present and ‘-debug-environments’
is absent, the ‘debug-environments’ declaration is initially
disabled, otherwise it is initially enabled. When compiling a
3000 line Scheme file it was observed that the total compilation
time is 70% longer and the executable code is 40% bigger.

Chapter 6: Scheme extensions 63

([not] proper-tail-calls)

Generate (or don’t generate) proper tail calls. When proper tail
calls are turned off, tail calls are handled like non-tail calls, that
is a continuation frame will be created for all calls regardless of
their kind. This is useful for debugging because the caller of a
procedure will be visible in the backtrace produced by the REPL’s
‘, b’ command even when the call is a tail call. Be advised that
this does cause stack space to be consumed for tail calls which
may cause the stack to overflow when performing long iterations
with tail calls (whether they are expressed with a let rec, named
let, do, or other form).

([not] generative-lambda)
Force (or don’t force) the creation of fresh closures when eval-
uating lambda-expressions. A fresh closure is always created
when a lambda-expression has at least one free variable (that
has not been eliminated by dead-code elimination or other com-
piler optimization) or when the generative-lambda declaration is
turned on. When a lambda-expression has no free variables and
the generative-lambda declaration is turned off, the value of the
lambda-expression may be the same procedure (in the sense of

eq?).

([not] optimize-dead-local-variables)

Remove (or preserve) the dead local variables in the environment.
Preserving the dead local variables is useful for debugging because
continuations will contain the dead variables. Thus, if the code
is also compiled with the declaration ‘debug—environments’
the ¢, e’, ¢, ed’, ¢, be’, and ‘, bed” REPL commands will display
the dead variables. On the other hand, preserving the dead local
variables may change the space complexity of the program (i.e.
some of the data that would normally be reclaimed by the garbage
collector will not be). Note that due to other compiler optimiza-
tions some dead local variables may be removed regardless of this
declaration.

([not] optimize-dead-definitions var...)

Remove (or preserve) the dead toplevel definitions of the given
global variables (all global variables if none specified). A
toplevel definition is dead if it is not referenced by toplevel
expressions of the program or toplevel definitions that aren’t
dead (regardless of the evaluation of its expression causing a
side-effect). When a module is separately compiled and some of
its definitions are only used by other modules, this declaration
must be used with care to keep definitions that are used by other
modules, for example if foo is referenced in another module
the following declaration should be used: ‘(declare (not
optimize-dead-definitions foo))’ .

Chapter 6: Scheme extensions

(
(
(
(

(number-type primitive...)

64

Numeric arguments and result of the specified primitives are
known to be of the given type (all primitives if none specified).
number-type can be: ‘generic’, ‘fixnum’, or ‘flonum’.

(mostly—number-type primitive...)

Numeric arguments and result of the

proper-tail-calls)

not generative-lambda)
optimize-dead-local-variables)
not optimize-dead-definitions)
generic)

specified primi-
tives are expected to be most often of the given type

(all primitives if none specified). mostly-number-type
can be: ‘mostly—-generic’, ‘mostly-fixnum’,
‘mostly-fixnum-flonum’, ‘mostly-flonum’, or
‘mostly-flonum-fixnum’.
The default declarations used by the compiler are equivalent to:
(declare

(gambit—-scheme)

(separate)

(inline)

(inline-primitives)

(inlining-1limit 370)

(allocation-limit #t)

(constant—-fold)

(lambda-1ift)

(not standard-bindings)

(not extended-bindings)

(run-time-bindings)

(safe)

(interrupts—-enabled)

(not poll-on-return)

(not debuq) ;; depends on debugging command line options

(debug—-location) ;7 depends on debugging command line options

(debug-source) ;; depends on debugging command line options

(debug-environments) ;; depends on debugging command line options

(

(

(

(

(

(

mostly—-fixnum-flonum)

)

These declarations are compatible with the semantics of R5RS Scheme and includes
a few procedures from R6RS (mainly fixnum specific and flonum specific procedures).
Typically used declarations that enhance performance, at the cost of violating the
R5RS Scheme semantics, are: (standard-bindings), (block), (not safe)
and (fixnum).

continuation? obj) procedure
continuation—-capture proc) procedure
continuation—graft cont proc obj...) procedure
continuation-return cont obj...) procedure

These procedures provide access to internal first-class continuations which are repre-

sented using continuation objects distinct from procedures.

Chapter 6: Scheme extensions 65

The procedure continuation? returns #t when obj is a continuation object and
#f otherwise.

The procedure continuation-capture is similar to the call/cc procedure but it
represents the continuation with a continuation object. The proc parameter must be
a procedure accepting a single argument. The procedure continuation-capture
reifies its continuation and calls proc with the corresponding continuation object as
its sole argument. Like for call/cc, the implicit continuation of the call to proc is
the implicit continuation of the call to continuation—-capture.

The procedure continuation—graft performs a procedure call to the procedure
proc with arguments obj... and the implicit continuation corresponding to
the continuation object cont. The current continuation of the call to procedure
continuation—graft is ignored.

The procedure continuation-return invokes the implicit continuation corre-
sponding to the continuation object cont with the result(s) obj. ... This procedure
can be easily defined in terms of continuation—-graft:

(define (continuation-return cont . objs)
(continuation—-graft cont apply values obijs))

For example:

> (define x #£f)
> (define p (make-parameter 11))
> (pp (parameterize ((p 22))
(cons 33 (continuation-capture
(lambda (c) (set! x c) 44)))))
(33 . 44)
> X
#<continuation #2>
> (continuation-return x 55)
(33 . 55)
> (continuation—-graft x (lambda () (expt 2 10)))
(33 . 1024)
> (continuation-graft x expt 2 10)
(33 . 1024)
> (continuation-graft x (lambda () (p)))
(33 . 22)
> (define (map-sqrtl 1st)
(call/cc
(lambda (k)
(map (lambda (x)
(if (< x 0)
(k ’'error)
(sqrt x)))
1st))))
> (map-sqrtl ' (1 4 9))
(1 2 3)
> (map-sqrtl ' (1 -1 9))
error
> (define (map-sqrt2 1st)
(continuation-capture

(lambda (c)
(map (lambda (x)
(if (< x 0)

(continuation-return c ’error)
(sqrt x)))

Chapter 6: Scheme extensions 66

1st))))

> (map-sqrt2 ' (1 4 9))

(1 2 3)

> (map-sqrt2 ' (1 -1 9))

error
(display-exception exc [port]) procedure
(display-exception-in-context exc cont [port]) procedure
(display-procedure—environment proc [port]) procedure
(display-continuation-environment cont [port]) procedure
(display-continuation-dynamic—environment cont [port]) procedure
(display-continuation-backtrace cont [port [display-env? procedure

[all-frames? [max-head [max-tail [depth]]]]]])
The procedure display—-continuation—-backtrace displays the frames of the
continuation corresponding to the continuation object cont on the port port. If it is
not specified, port defaults to the current output-port. The frames are displayed in
the same format as the REPL’s ‘, b’ command.

The parameter display-env?, which defaults to # £, controls if the frames are displayed
with its environment (the variables accessible and their bindings).

The parameter all-frames?, which defaults to #f, controls which frames are displayed.
Some frames of ancillary importance, such as internal frames created by the inter-
preter, are not displayed when all-frames? is #£f. Otherwise all frames are displayed.

The parameters max-head and max-tail, which default to 10 and 4 respectively, con-
trol how many frames are displayed at the head and tail of the continuation.

The parameter depth, which defaults to 0, causes the frame numbers to be offset by
that value.

For example:

> (define x #£f)
> (define (fib n)
(if (< n 2)
(continuation-capture
(lambda (c) (set! x c) 1))
(+ (£ib (- n 1))
(fib (- n 2)))))
> (£ib 10)
89

\

(display—continuation-backtrace x)

0 fib (console)@7:12 (fib (= n 2))

1 fib (console)@7:12 (fib (= n 2))

2 fib (console)@7:12 (fib (= n 2))

3 fib (console)@7:12 (fib (= n 2))

4 fib (console)@7:12 (fib (= n 2))

5 (interaction) (console)@8:1 (fib 10)

#f

> (display-continuation-backtrace x (current-output-port) #£ #t)
0 fib (console)@7 12 (fib (= n 2))

1 fib (console)@ :9 (+ (fib (= n 1)) (fib (-
2 fib (console)@7:12 (fib (= n 2))

3 fib (console)@6:9 (+ (fib (= n 1)) (fib (-
4 fib (console)@7: 12 (fib (= n 2))

5 fib (console)@6: (+ (fib (= n 1)) (fib (-

Chapter 6: Scheme extensions 67

6 fib (console)@7:12 (fib (= n 2))
7 fib (console)@6:9 (+ (fib (= n 1)) (fib (-
8 fib (console)@7:12 (fib (= n 2))
9 fib (console)@6:9 (+ (fib (= n 1)) (fib (-
ié.##with—no—result—expected—toplevel
14 ##repl-debug
15 ##repl-debug-main
16 ##kernel-handlers
#f
> (display-continuation-backtrace x (current-output-port) #t #£)
0 fib (console)@7:12 (fib (= n 2))
n = 2
1 fib (console)@7:12 (fib (= n 2))
n =4
2 fib (console)@7:12 (fib (= n 2))
n==o
3 fib (console)@7:12 (fib (= n 2))
n = 8
4 fib (console)@7:12 (fib (= n 2))
n = 10
5 (interaction) (console)@8:1 (fib 10)
#f
> (display-continuation-backtrace x (current-output-port) #£f #£f 2 1 100)
100 fib (console)@7:12 (fib (= n 2))
101 fib (console)@7:12 (fib (= n 2))
iéé (interaction) (console)@8:1 (fib 10)
#£
6.4 Undocumented extensions
The procedures in this section are not yet documented.
(make-thread-group [name [thread-group]|) procedure
(thread-group? obj) procedure
(thread-group—name thread-group) procedure
(thread-group-parent thread-group) procedure
(thread-group-resume! thread-group) procedure
(thread-group-suspend! thread-group) procedure
(thread-group-terminate! thread-group) procedure
(thread-group->thread-group-1list thread-group) procedure
(thread—-group—>thread—-group—vector thread-group) procedure
(thread-group->thread-1ist thread-group) procedure
(thread-group->thread-vector thread-group) procedure
(thread-group-specific thread-group) procedure
(thread-group-specific-set! thread-group obj) procedure
(thread—state thread) procedure
(thread-state-uninitialized? thread-state) procedure
(thread—-state—initialized? thread-state) procedure
(thread-state-running? thread-state) procedure
(thread-state-running-processor thread-state) procedure
(

thread-state-waiting? thread-state) procedure

Chapter 6: Scheme extensions

(thread-state-waiting-for thread-state)
(thread-state-waiting-timeout thread-state)
(thread-state-normally-terminated? thread-state)
(

(

(thread-state—-abnormally-terminated-reason

thread-state)
(top [timeout [thread-group [port]]])

(thread-interrupt! thread [thunk])

(thread-suspend! thread)
(thread—-resume! thread)

(thread-thread-group thread)
(define-type-of-thread name field. . .)
(thread—init! thread thunk [name [thread-group]])

(initialized-thread-exception? obj)
(initialized-thread-exception-procedure exc)
(initialized-thread-exception—-arguments exc)

(uninitialized-thread-exception? obj)
(uninitialized-thread-exception—-procedure exc)
(uninitialized-thread-exception—arguments exc)

(inactive-thread-exception? obj)
(inactive-thread-exception-procedure exc)
(inactive-thread-exception—-arguments exc)

rpc-remote-error—-exception? obj)
rpc-remote-error-exception-procedure exc)
rpc—remote—error—-exception—arguments exc)
rpc-remote—-error—-exception-message exc)

(
(
(
(

(invalid-utf8-encoding-exception? obj)

(invalid-utf8-encoding-exception-procedure exc)
(invalid-utf8-encoding-exception—-arguments exc)

(module—-not-found-exception? obj)
(module—-not-found-exception—-procedure exc)
(module—not—-found-exception—arguments exc)

(processor? obj)
(current-processor)
(processor—1id processor)

(timeout—>time timeout)
(current-second)
(current-Jjiffy)

(jiffies—-per—-second)

thread-state-normally-terminated-result thread-state)
thread-state—-abnormally-terminated? thread-state)

68

procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure

procedure
procedure

procedure
special form
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure

Chapter 6: Scheme extensions

get—-environment-variable name)
get—-environment-variables)
executable-path)

command—name)
command—-args)

(

(

(

(

(

(script—-file)
(script—-directory)
(open—dummy)
(port-settings—set! port settings)
(port—-io-exception-handler-set! port handler)
(input-port-bytes-buffered port)

(
(

input-port-characters-buffered port)

nonempty—-input-port—-character-buffer-exception?

obj)

69

procedure
procedure
procedure

procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure
procedure

procedure

(nonempty-input-port-character-buffer-exception-argumembeedure

exc)

(nonempty-input-port-character-buffer-exception-procedurneedure

exc)

repl-input-port)
repl-output—-port)
repl—-error—port)
console—-port)

current-user-interrupt-handler [handler|)
default-user—-interrupt-handler)
defer-user—-interrupts)

primordial-exception—-handler exc)
err—-code—->string code)

foreign? obj)
foreign-tags foreign)
foreign-address foreign)
foreign-release! foreign)
foreign-released? foreign)

invalid-hash-number-exception? obj)
invalid-hash—-number-exception—-procedure exc)
invalid-hash—number—-exception—-arguments exc)

tcp-client-local-socket—-info tcp-client-port)
tcp-client-peer-socket—-info tcp-client-port)
tcp-client-self-socket—-info tcp-client-port)

tcp-server-socket—-info tecp-server-port)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

socket—-info? obj)

procedure
procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure

procedure

procedure

Chapter 6: Scheme extensions

(socket—info—-address socket-info)
(socket—-info-family socket-info)
(socket—-info-port—number socket-info)

(system—-version)
(system-version-string)

(system—type)
(system—-type-string)
(configure-command-string)

(system—stamp)

(future expr)
(touch obj)

(tty? obj)

(tty-history tty)

(tty-history-set! tty history)
(tty-history-max—-length-set! tty n)
(tty—-paren-balance-duration-set! tty duration)
(tty-text—-attributes—-set! tty attributes)
(tty—-mode—-set! tty mode)

(tty-type-set! tty type)

(with—-input—-from-port port thunk)
(with-output—-to-port port thunk)

(input-port-char—-position port)
(output-port-char-position port)

(open—-event—-queue selector)
(main ...)

(dead-end)

(poll-point)

(define-record-type ...)
(define-type ...)

(this—-source-file)
(receive ...)
(define—-values ...)
(define—-module—-alias ...)
(r7rs—guard ...)

(case—lambda ...)
(syntax—case ...)
(syntax ...)

(datum—->syntax obj)

70

procedure
procedure
procedure

procedure
procedure

procedure
procedure
procedure

procedure

special form
procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure

special form
special form

special form
special form
special form
special form
special form

special form
special form
special form

procedure

Chapter 6: Scheme extensions

syntax—>datum stx)
syntax—>1ist stx)
syntax—>vector stx)

length+ clist)
car+cdr pair)

(

(

(

(

(

(first pair)
(second pair)
(third pair)
(fourth pair)
(fifth pair)
(sixth pair)
(seventh pair)
(eighth pair)
(ninth pair)
(tenth pair)

(
(

not-pair? x)
null-1ist? list)
(proper—-1ist? s)
(circular-1ist? s)
dotted-1ist? s)

(

(filter pred list)
(remove pred list)
(remqg elem list)
(
(
(

concatenate list-of-lists [separator])
concatenate! list-of-lists)

list= elt=1Ist ...)

(list—-set list k val)
(list—-set! list k val)

fold proc base list . ..)

fold-right proc base list .. .)

iota count [start [step]])

(
(
(
(circular-list xy...)
(cons* xy...)

(

list—-copy list)

(list—-tabulate n init-proc)

(make-1list n [fill])
(reverse! list)

(append-reverse list tail)

71

procedure
procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure

procedure
procedure

procedure

procedure
procedure

procedure
procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

Chapter 6: Scheme extensions

xcons d a)

(
(
(take x1)
(drop x 1)
last pair)
last-pair pair)

list-sort proc list)
list-sort! proc list)

(

(

(

(

(finite? x)
(infinite? x)
(nan? x)

(

acosh x)
(asinh x)
(atanh x)
(cosh x)
(sinh x)
(tanh x)
(conjugate x)

bits bool...)
bits->1list i [len])
list—>bits list)
bits->vector i [len])
vector—->bits vector)

(

(

(

(

(

(six.infix datum)
(six.!)
(six.!x x)
(six.&x x)
(six.**x x)
(six.*x x)
(six.++x x)
(six.+x x)
(six.——x x)

(six.—-x x)
(six.arrow expr ident)
(six.asyncx x)
(six.awaitx x)
(six.break)
(six.call func arg...)
(six.case)
(six.clause)

(

six.compound statement. . .

append-reverse! list tail)

72

procedure
procedure

procedure
procedure

procedure
procedure

procedure
procedure

procedure
procedure
procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure
procedure
procedure

special form
undefined
special form
special form
special form
special form
special form
special form
special form
special form
special form
undefined
undefined
undefined
special form
undefined
undefined
special form

Chapter 6: Scheme extensions

(six.cons x y)
(six.continue)
(six.define-procedure ident proc)
(six.define-variable ident type dims init)
(six.do-while stat expr)
(six.dot expr ident)

(six.for statl expr2 expr3 stat2)
(six.goto expr)
(six.from—import exprl expr2)
(six.from—import—* expr)
(six.identifier ident)
(six.if expr statl [stat2])
(six.import expr)
(six.index exprl expr2)
(six.label ident stat)
(six.list xy)

(six.literal value)
(six.make—-array init dim...)
(six.new ident arg...)
(six.null)

(six.procedure type params stat)
(six.procedure-body stat...)
(six.return)

(six.switch)

(six.typeofx x)

(six.while expr stat...)
(six.x!==y xy)

(six.x!=y xy)

(six.x%=y xy)

(six.x%y x)

(six.x&&Y X y)

(six.x&=y xy)

(six.x&y xy)

(six.x**=y xy)

(six.x**y x y)

(six.x*=y xy)

(six.x*y xy)

(six.x@=y xy)

(six.x@y xy)

(six.x++ x)

(six.xt+=y xy)

(six.x+y xy)

(lsix.x,y| xy)

(six.x—— Xx)

(six.x—=y xy)

(six.x-y xy)

(six.x//=y xy)

73

special form

undefined
special form
special form
special form
special form
special form

undefined

undefined

undefined
special form
special form

undefined
special form

undefined
special form
special form

procedure
special form
special form
special form
special form

undefined

undefined

undefined
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form

Chapter 6: Scheme extensions

(six.x//y xy)
(six.x/=y xy)
(six.x/y xy)
(six.x:-y xy)
(six.x:=y xy)
(six.x:y xy)
(six.x<<=y xy)
(six.x<<y xy)
(six.x<=y xy)
(six.x<y xy)
(six.x===y xy)
(six.x==y xy)
(six.x=y xy)
(six.x>=y xy)
(six.x>>>=y xy)
(six.x>>>y xy)
(six.x>>=y xy)
(six.x>>y x y)
(six.x>y x V)
(six.x?y:2 Xy z)
(six.x "=y xy)
(six.x"y xy)
(Isix.x\|=y| xy)
(1six.x\|y| xy)
(Isix.x\[\lyl xy)
(six.xandy xy)
(six.xinstanceofy xy)
(six.xiny xy)
(six.xisy xy)
(six.notx x y)
(six.xory xy)

(six. X x)
(six.yieldx x)

(readtable—-comment—handler readtable)
(readtable—-comment—-handler—set readtable new-value)

(open—-output-bytevector [u8vector-or-settings])

74

special form
special form
special form

undefined
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form
special form

undefined
special form
special form
special form
special form
special form

undefined

procedure
procedure

procedure

Chapter 7: Modules 75

7 Modules

Gambit supports multiple modularization approaches and constructs: legacy modules, prim-
itive modules and R7RS compatible modules. These are described in that order, which
corresponds to increased abstraction level. Unless there is a need for detailed control over
the modules, it is best to use the R7RS compatible module system for the development of
new code.

7.1 Legacy Modules

The legacy way of modularizing code, which was popular up to R5RS, is still supported
by Gambit. It consists of using the 1oad procedure and the include form. We discuss
it first to introduce some useful terms and explain the shortcomings of this modularization
approach.

(load path) procedure
The 1oad procedure’s path argument, a string, specifies the location in the file system
of a file to load. Loading a file executes the code contained in the file, which is
either source code or compiled code (a dynamically loadable object file created by
the Gambit Scheme compiler, see the procedure compile-file). When path has
no extension the load procedure first attempts to load the file with no extension as
a Scheme source file. If that file doesn’t exist it will search for both a source file and
an object file. The object file’s path is obtained by adding to path a ‘.on’ extension
with the highest consecutive version number starting with 1. The source file’s path is
obtained by adding to path the file extensions ‘.s1d’, ‘.scm’ and ‘.six’ (the first
found is the source file). If both a source file and an object file exist, then the one
with the latest modification time is loaded. Otherwise the file that is found is loaded.
When path has an extension, the 1oad procedure will only attempt to load the file
with that specific extension. After executing the code contained in the file, the 1oad
procedure returns the path of the file that was loaded.

When a source code file is loaded its extension is used to determine how it is parsed,
unless the file’s first line is a special script line (see Section 2.6 [Scheme scripts],
page 7). When the extension is different from ‘. six’ the content of the file is parsed
using the normal Scheme prefix syntax. When the extension is ‘. six’ the content of
the file is parsed using the Scheme infix syntax extension (see Section 15.12 [Scheme
infix syntax extension], page 235).

Due to operating system limitations, loading a given ‘. on’ object file more than once
in the same process is not supported. It is possible however to recompile the source
code file to create a new ‘.om’ object file with m > n and load that object file.
For example:

$ cat my-mod.scm

(define (double x) (* x 2))
(display "my-mod has finished loading!!!\n")
$ gsi

Gambit v4.9.4

> (load "my-mod")
my-mod has finished loading!!!

Chapter 7: Modules 76

"/Users/feeley/gambit/doc/my-mod.scm"
> (double 21)

42

> (load "my-mod.scm")

my-mod has finished loading!!!
"/Users/feeley/gambit/doc/my-mod.scm"
>, q

$ gsc my—-mod

$ gsi

Gambit v4.9.4

> (load "my-mod")

my-mod has finished loading!!!

"/Users/feeley/gambit/doc/my-mod.ol"

> (double 21)

42

> (load "my-mod")

**% ERROR IN (console)@3.1 -- Can’t load a given object file more than once
(load "my-mod")

1>

Note that any macro definition in the loaded file is local to the file and is not visible
from the REPL or other files that loaded this file. The include form can be used
to access the macros defined in another file.

(include path) special form

(##include path) special form
The path argument must be a string specifying the location of an existing file con-
taining Scheme source code. Relative paths are relative to the file that contains the
include form. The include special form splices the content of the specified source
file. This form can only appear where a define form is acceptable, i.e. at top level
or in the body of a binding form.

For example:

$ cat my-defs.scm
(define-macro (double x) ‘(* ,x 2))
(define (quad y) (double (double y)))
(display "howdy!\n")
$ cat my-includer.scm
(define (f x)
(include "my-defs.scm")
(+ 1 (guad x)))
$ gsi
Gambit v4.9.4

> (load "my-includer")
"/Users/feeley/udem-dlteam/gambit/my—includer.scm"
> (£ 10)

howdy!

41

> (£ 20)

howdy!

81

With legacy modularization, the code that implements the module’s functionality is
put in a source code file and this module is accessed by other code by using a load or

Chapter 7: Modules 7

include of that file. Here is an example of an angle0 module that is used by an appO
main program:

P e et file: angle0/angle0.scm
(define factor (/ (atan 1) 45))

(define (deg->rad x) (* x factor))

(define (rad->deg x) (/ x factor))

iy ————————————— = file: app0O.scm

(load "angleO/angleO.scm") ;; or (include "angleO/angleO.scm")
(println "90 degrees is " (deg->rad 90) " radians")

;; run with: gsi appO.scm
This modularization approach has a number of issues:

e It hinders code sharing among different programs and users because a shared module’s
location in the filesystem must be known to all modules loading or including it. In
the above example the path "angle0O/angle0.scm" is relative so the 1oad proce-
dure will resolve the path incorrectly if the program executes (current-directory
"...") before calling 1oad.

e When a module is needed by more than one other module there will be code duplication,
redundant evaluation/compilation, and probably incorrect execution if the module has
side effects that should only happen once (displaying a message, opening a database
on the filesystem, initializing the module’s state, etc). Moreover, when the module has
been compiled to an object file it can’t be loaded more than once.

e All the definitions of a module will be put in the global environment (including top level
macro definitions when using a top level include but not when using load). This
pollutes the global environment with definitions that were not intended to be exported
by the module’s designer, such as the variable factor in the above example that is
only meant to be used by the deg->rad and rad->deg procedures. Other modules
may also need a factor variable internally, for instance to convert distances from the
metric to the english system. Nothing prevents such accidental clashes.

7.2 Primitive Modules

7.2.1 ##demand-module and ##supply-module forms

The ##demand-module form offers a way to avoid the issues of multiple loading and
filesystem localization of modules. The sole parameter of this form is an (unevaluated)
symbol that identifies the module on which the module containing the ##demand-module
depends. When a module A contains a (##demand-module B), Gambit’s runtime system
will ensure that module B is loaded before module 2 is loaded. It also registers the module
in a cache when it is loaded so that it is loaded exactly once. In other words the ##demand-
module form expresses the requirement that the current module needs the functionality of
another module. A module can contain multiple uses of ##demand-module and possibly
more than once for a given module. The ##demand-module form can appear anywhere a
define can appear. There is also a related ##supply-module form that should appear
in the module to declare the module’s identity.

Gambit’s runtime system searches for modules in various directories, by default in "~ 1ib
then in “~“userlib (which maps to “/.gambit_userlib by default). These two direc-

Chapter 7: Modules 78

tories are where builtin modules and user installed modules are located respectively. The
source code for a module M is searched, in each of the module search order directories, first
in M/M. ext and then in M. ext, where .ext is one of the acceptable Scheme source code
file extensions (.sld, .scm, .six, etc). The list of module search order directories can
be extended with the —: search=DIR runtime option or by a command line argument to
gsi and gsc that ends with a path separator or a ‘.”’.

With ##demand-module and ##supply—-module the previous example can be rewrit-
ten like this:

i file: anglel/anglel.scm
(##supply-module anglel) ;; declare that this is the module anglel
(define factor (/ (atan 1) 45))

(define (deg->rad x) (* x factor))

(define (rad->deg x) (/ x factor))

e file: appl.scm
##demand-module anglel) ;; declare dependency on module anglel

o~ o~ N

println "90 degrees is " (deg->rad 90) " radians")

;; run with either: gsi . appl.scm

H or: gsi —-:search=. appl.scm

I

;; or install the anglel module to avoid the . and -:search=.

7.2.2 ##namespace and ##import forms

(namespace ...) special form
(##namespace ...) special form
(import module-ref) special form
(##import module-ref) special form

The ##namespace form offers a way to avoid name clashes by specifying a mapping
between identifiers. The mapping it specifies has the same scope as a macro definition: it
applies to the rest of a source code file if it is at top level, or applies to the rest of the
body of a binding form if it is used in the body of a binding form. The call (##namespace
("foo#" a b)) specifies that a reference to a becomes foo#a and a reference to b becomes
foo#b. Here foo# is the namespace. Finer control over the mapping is possible by using
aliases as in (##namespace ("foo#" (a bar) b)) which maps a to foo#bar and b to
foo#b. Multiple namespace specifications can appear in the body of the ##namespace
form. When no identifiers are specified, the mapping maps all identifiers not containing #
to the namespace. For example in the scope of (##namespace ("foo#")) the reference
x maps to foo#x and the reference bar#x remains unchanged.

Given that modules are identified by a unique symbol, the global names defined by a
module M can be put in the namespace M# to avoid name clashes with other modules. The
source code of module M and the modules depending on M can explicitly prefix the global
names defined by M with M# or use a ##namespace form to make this prefixing implicit.
By convention the namespace definition for the identifiers exported by module M is specified
in the source code file M# . scm in the same directory as the M. scm file.

Using this convention and the include and ##namespace forms, the previous example
can be rewritten like this:
Bt file: angle2/angle2#.scm

Chapter 7: Modules 79

(##fnamespace ("angle2#" deg->rad rad->deq))

P file: angle2/angle2.scm
include "anglel2#.scm")

##namespace ("angle2#" factor))
##supply-module angle?2)
define factor (/ (atan 1) 45))

~ o~ o~~~ —~

define (deg->rad x) (* x factor))
define (rad->deg x) (/ x factor))
F A file: app2.scm

include "angle2/angle2#.scm")
##demand-module angle2)
println "90 degrees is " (deg->rad 90) " radians")

—~ e~~~

Note that the parameters of the two include forms are different, but this is correct
because the paths are relative to the file containing the include form. However the module
localization problem has been reintroduced for the file angle2/angle2#.scm.

This problem can be solved using the ##import form that combines the semantics of
the include and ##demand-module forms. The call (##import M) will use the module
search order directories to locate the source code file of module M and will expand to an
include of the “hash” file M# . ext if it exists in the same directory, and a (##demand—-
module M).

In addition, a builtin module gambit exists that contains all the global names ex-
ported by the runtime library. The gambit module’s “hash” file gambit#.scm contains

a ##namespace form that lists all the names exported by the runtime library in an empty
namespace:

P Rt file: ""lib/gambit#.scm
(##namespace ("" define if quote set! cons car cdr + - * / ;; etc

Using the gambit module and the ##import form, the previous example can be rewrit-
ten like this:

e file: angle3/angle3#.scm

F file: angle3/angle3.scm
(##fnamespace ("angle3#")) ;; map all identifiers to angle3# namespace
(##fimport gambit) ;; except those defined by Gambit’s RTS
(##supply-module angle3)

(define factor (/ (atan 1) 45))

(define (deg->rad x) (* x factor))

(

define (rad->deg x) (/ x factor))

iy, ————F7""——————————————————————————————— file: app3.scm
(##import angle3)

(println "90 degrees is " (deg->rad 90) " radians")

In this example the (##import angle3) takes care of the namespace mapping and
the loading of angle3. scm because it is equivalent to:
(begin
(##include "angle3/angle3#.scm")
(##demand-module angle3))

Chapter 7: Modules 80

7.2.3 Macros

In addition to procedures, a module M may export macros. The file M# . scm is the designated
place to put exported macro definitions. These macro definitions will essentially be copied
at the point where the ##import of the module is done. Macros that are needed strictly
for the implementation of a module may be defined in the file M.scm and these macro
definitions will not be visible elsewhere. Note that the macros defined with define-macro
are not hygienic, so the macro definition writer should take care to explicitly indicate what
identifiers resolve to using fully qualified identifiers (i.e. containing a # sign).

To explain these issues, lets extend our example module in the following ways. First we
want the module to export the macros sind and asind that are like the sin and asin
procedures but use degrees instead of radians. Note that it would be a better design for
sind and asind to be procedures, but we’ll implement them as macros for the sake of the
example. Second we want the procedures deg—>rad and rad->deg to check that their
argument is a real number using a check—-real macro.

In a setting where name clashes are not an issue these macros can be defined as follows:
(define-macro (sind x) ‘(sin (deg->rad ,x)))
(define-macro (asind x) ‘(rad->deg (asin ,x)))
(define-macro (check-real x y)
‘(1f (real? ,x) ,y (error "not reall!")))

Name clashes will occur when the locations where these macros are called are in the
scope of new bindings for sin, deg->rad, if, error, etc which are identifiers used in
the expanded code. A name clash can also happen for the name define-macro itself. To
remove the possibility of name clashes the ##namespace form and fully qualified identi-
fiers can be used. All the Gambit special forms, such as let, if, and define-macro,
have a fully qualified version (##1let, ##if, and ##define-macro). Gambit predefined
procedures, such as sin, real?, and error, don’t necessarily have a fully qualified ver-
sion (some do and some don’t) but an empty namespace definition in a ##1let form can be
used to avoid the clash, i.e. (##let () (##namespace ("") sin)) refers to the global
variable sin whatever scope it is in. With these forms our example can be written like this:

D B file: angle4/angled#.scm

(##namespace ("angled#" deg->rad rad->deg))

(##define-macro (sind x) “((##let () (##namespace ("")) sin)
(angledfdeg->rad ,x)))

(##define-macro (asind x) ‘(angled#rad->deg

((##let () (##namespace ("")) asin) ,x)))
B file: angle4/angle4.scm
##namespace ("angled#")) ;; map all identifiers to angled# namespace

##supply-module angled)
##define-macro (check-real x y)
Y(##LE ((#f#let () (##namespace ("")) real?) ,x)
rY
((##let () (##namespace ("")) error) "not reall!")))
(define factor (/ (atan 1) 45))
(define (deg->rad x) (check-real x (* x factor)))
(define (rad->deg x) (check-real x (/ x factor)))

(
(##import gambit) ;; except those defined by Gambit’s RTS
(
(

e file: app4.scm
(##import angled)
(println "90 degrees is " (deg->rad 90) " radians")

Chapter 7: Modules 81

(println "sind(90) is " (sind 90))

7.3 Primitive Procedures

Identifiers with a ## prefix are not valid identifiers according to RnRS. This means that code
containing ## prefixed identifiers cannot be processed by and shared with other Scheme
implementations. They are hard to read by people that aren’t used to that extension.
Moreover the code lacks abstraction and safety because using ##car rather than car has a
specific meaning: avoiding type checks. Consequently it is hard to "turn on" safe execution
of the code when it needs to be debugged. Many parts of the runtime library are expressed
at a low level of abstraction (with ## prefixed identifiers) even when not required.

For those reasons ## prefixed identifiers should be used sparingly in new code, and
existing code should gradually be rewritten to avoid them. The primitive operations which
are used to build higher-level operations are all defined as procedures with a ## prefix.

The file ""1ib/_gambit#.scm contains the definition of the primitive macro whose
purpose is to abstract from the ## prefix. The call (primitive foo) is equivalent to
##foo and (primitive (foo a b)) is equivalent to (##foo a b). The file ""1ib/_
gambit#.scm also contains the definition of the standard macro whose purpose is sim-
ilar, but forces the use of the empty namespace. The call (standard +) is equivalent
to (##let () (##namespace ("" +)) +) and (standard (+ a b)) is equivalent to
((##let () (##namespace ("" +)) +) ab). Code that uses the primitive and
standard macros can be ported to other Scheme implementations by defining implementa-
tion specific primitive and standard macros that implement the appropriate mapping
for that implementation.

The file " "1ib/_gambit#.scm also contains definitions for the define-procedure
and define-primitive macros. The primitive and standard macros work
in tandem with the define-procedure and define-primitive macros and
the ""lib/gambit/prim/prim#.scm file and (gambit prim) library. The file
""lib/gambit/prim/prim#.scm contains namespace declarations that map operations
exported by the runtime library without a ## prefix to their ## prefixed names if this
preserves the meaning of the operation but possibly (and usually) with no type checking.
The (gambit prim) library is similar but in the form of a R7RS library. For example
the following code:

(include "~ "lib/gambit/prim/prim#.scm")
(define (foo x) (square (car x)))
(println (foo (bar 0.5)))

(pp "hello")

is equivalent to this code:

(##define (foo x) (##square (##car x)))
(##println (foo (bar 0.5)))
(##unimplemented#pp "hello")

The namespace declarations in ~ " 1ib/gambit/prim/prim#.scm have caused a map-
ping of square to ##square, car to ##car and println to ##println because those
primitives perform the same operations (when the code has no errors). Note that foo and
bar have remained the same, because they are not procedures exported by the runtime
library, and pp has been mapped to ##unimplemented#pp because pp is a procedure

Chapter 7: Modules 82

exported by the runtime library but ##pp is not defined. Having unimplemented in the
name helps catch situations where the programmer expected a primitive operation to exist
but this isn’t the case.

The define-procedure macro does two things. It supports type annotations in the
parameter list and it inserts a (include "~ “lib/gambit/prim/prim#.scm") in the
body so that primitive operations can be used without the ## prefix. Type checking and
automatic forcing of promise arguments are also added implicitly. The macro define-
primitive is similar, but the procedure defined is implicitly prefixed with ##.

So all of these things work together to abstract away from the concept of primitive op-
erations. Primitives are implemented using procedures with a ## prefix, but other Scheme
implementations could do it differently.

Finally, there’s the (declare-safe-define-procedure <bool>) macro that can
be used to enable/disable the mapping of names exported by the runtime library to the
corresponding primitives. This is useful to enable type checks in the code. For example the
following definition:

(define-procedure (foo (x vector))
(vector-ref x 5))

which expands to
(define (foo x)
(macro-check-vector x " (1 . x) (foo x)
(##vector-ref x 5)))
which expands to
(define
(if

(foo x)

(##vector? x)

(##vector-ref x 5)
(##fail-check-vector ' (1 . x) foo x)))

If the code is in the scope of a (declare-safe-define-procedure #t) then it is
vector—ref that is called instead of ##vector—-ref which will both check that x is a
vector (redundantly) and that the index is in range. However, the use of ##vector-ref
can be forced by writing the code with an explicit use of the primitive macro:

(define-procedure (foo (x vector))
(primitive (vector-ref x 5)))
The expectation is that the primitive special form will be used sparingly. Searching
the source code for the pattern " (primitive" is a good way to find potentially unsafe
code.

7.3.1 Type specifiers

Here is a list of the available type specifiers for a define-procedure parameter x and
the associated constraint on the value of x.

Note that there is no direct way for checking for a "list" or "list of elements of
type T". A procedure taking a list parameter will likely iterate on the list’s pairs
going from cdr to cdr until a non-pair is found. Then a check for the empty list
with (macro-check-proper—-list-null 1st <arg-id> (<procedure—-name>
<args>...) <body>) will check that the parameter is a proper list (i.e. that it ends
with the empty list).

Chapter 7: Modules 83

7.3.1.1 Basic types (other than numbers)

boolean x is a boolean

char x is a character

pair x is a pair

procedure x is a procedure

string x is a string

symbol x is a symbol

vector x is a vector

7.3.1.2 Numbers

number x is a number (possibly complex, rational, etc)
real x is a real number (any number except complex)
fixnum x is a fixnum and -2°(W-3) <= x <= 2" (W-3) - 1

(fixnum-range lo hi)
x is a fixnum and lo <= x < hi

(fixnum-range—-incl lo hi)
x is a fixnum and lo <= x <= hi

index x 1s a fixnum and 0 <= x

(index-range lo hi)
x is a fixnum and 0 <=lo <= x < hi

(index-range—-incl lo hi)
x is a fixnum and 0 <= lo <= x <= hi

exact-signed-int8
X is an exact integer, -128 <= x <= 127

exact—-signed-intl6
X is an exact integer n, -32768 <= x <= 32767

exact-signed-int32
X is an exact integer n, -2°31 <=x <=2"31-1

exact—-signed-int64
X is an exact integer n, -2763 <= x <=2763 - 1

exact-unsigned-int8
x is an exact integer n, 0 <= x <= 255

exact-unsigned-intl6
x is an exact integer n, 0 <= x <= 65535

exact-unsigned-int32
x is an exact integer n, 0 <= x <=2"32-1

exact-unsigned-int64
x is an exact integer n, 0 <= x <=2"64 -1

Chapter 7: Modules 84

flonum x is a flonum, exception mentions FLONUM
inexact-real x is a flonum, exception mentions Inexact REAL

inexact-real-list
x is a flonum, exception mentions Inexact REAL LIST

7.3.1.3 Time types
time x is a time object
absrel-time x is a real or a time object

absrel-time-or-false
x is #f or a real or a time object

7.3.1.4 Ports

port x is a port (input, output, or input-output)
input-port x is an input port

output-port x is an output port

object—-input-port
x is an object input port

object-output-port
x is an object output port

vector—-input-port
x is a vector input port

vector—output-port
x is a vector output port

character—-input-port
x is a character input port

character-output-port

x is a character output port
string-input-port

x is a string input port
string-output-port

x is a string output port
byte-port x is a byte port (input, output, or input-output)
byte—-input-port

x is a byte input port
byte-output-port

x is a byte output port

u8vector—-input-port
x is a u8vector input port u8vector-output-port x is a u8vector output
port

Chapter 7: Modules 85

device-input-port
x is a device intput port

device-output-port
x is a device output port

process-port X is a process port

tcp-client-port
x is a tep-client port

tcp—-server—-port
x is a tcp-server port

udp-port x is a udp port

udp—-input-port
x is a udp input port

udp-output-port
x is a udp output port

tty-port x is a tty port

7.3.1.5 List and vector variants of above

list no type checking (a non-null non-pair object is in fact a degenerate
dotted list), exception mentions LIST

proper—list no type checking (code traversing the list must check for a proper-list),
exception mentions PROPER LIST

proper—-list—-null
x is the empty list, exception mentions PROPER LIST

proper-or—circular—-1list
no type checking (code traversing the list must check for a proper-list
or circular-list), exception mentions PROPER or CIRCULAR LIST

proper-or—circular—-list—-null
x is the empty list, exception mentions PROPER, LIST

char-list x is a character, exception mentions CHARACTER LIST
char—-vector x is a character, exception mentions CHARACTER VECTOR
pair-list x is a pair, exception mentions PAIR LIST

exact-unsigned-int8-list-exact-unsigned-int8
x is an exact-unsigned-int8, exception mentions INTEGER LIST

exact-unsigned-intl6-list—-exact-unsigned-intl6
x is an exact-unsigned-int16, exception mentions INTEGER, LIST

exact-unsigned-int32-list-exact-unsigned-int32
x is an exact-unsigned-int32, exception mentions INTEGER LIST

exact-unsigned-int64-list-exact-unsigned-int64
x is an exact-unsigned-int64, exception mentions INTEGER LIST

Chapter 7: Modules 86

exact-signed-int8-list-exact-signed-int8

x is an exact-signed-int8, exception mentions INTEGER LIST

exact-signed-intl6-list-exact-signed-intl6

x is an exact-signed-int16, exception mentions INTEGER, LIST

exact-signed-int32-list-exact-signed-int32

x is an exact-signed-int32, exception mentions INTEGER, LIST

exact—-signed-int64-list-exact-signed-int64

x is an exact-signed-int64, exception mentions INTEGER LIST

7.3.1.6 Gambit types

error—-exception

box
condvar
f32vector
f6dvector
foreign
keyword
mutex
processor
slévector
s32vector
s64vector
s8vector
table
tgroup
thread
ulévector
u32vector
u6dvector
u8vector

will

continuation

random—source

readtable

type

mutable

x is an error-exception object
x is a box

x is a condition variable

x is a f32vector

x is a f64vector

x is a foreign object

>
e

a keyword

is a mutex

is a processor object
is a sl6vector

is a s32vector

is a s64vector

is a s8vector

is a table

is a thread group
is a thread

is a ul6vector

is a u3d2vector

is a ub4vector

is a u8vector

T T T o T T T T T R A B

is a will

.
e

a continuation object

x is a random-source object

x is a readtable

x is a structure type descriptor

x is a mutable object

Chapter 7: Modules 87

7.3.1.7 Others

initialized-thread
not—-initialized-thread
not-started-thread
not-started-thread-given—-initialized
string-or-ip-address
string-or—-nonnegative-fixnum

7.4 R7TRS Compatible Modules

The R7RS Scheme standard specifies a modularization approach based on the concept of
library. A library is defined using the define-1library form. This form is implemented
as a macro that expands into the constructs used by primitive modules, in particular a
##namespace declaration with a namespace derived from the library’s name so that all
variables defined by the library are in that namespace. With the define-library form
the angle3 module example given previously can be written like this:

B el file: angle3.sld
(define-library (angle3)

(export deg—>rad rad->deq)

(import (scheme base)
(scheme inexact))

(begin
(define factor (/ (atan 1) 45))
(define (deg->rad x) (* x factor))
(define (rad->deg x) (/ x factor))))

For this library the expansion of the define-library form will contain
a ##namespace declaration that causes the definition of the global variables
angle3ffactor, angle3fdeg->rad, and angle3#rad->deg. Meanwhile an
(import (angle3)) in another library will generate a ##namespace declaration that
maps uses of deg—>rad and rad->deg to the global variables angle3#deg->rad and
angle3#rad->deg respectively (note that the unexported global variable factor is not
included in the generated ##namespace declaration).

For more complex libraries whose code is split into multiple files it is convenient to put all
the files in a dedicated subdirectory. This is the preferred filesystem structure for a library
but the runtime system supports both styles. The previous module could be structured like
this instead:

P file: angle3/angle3.sld
(define-library (angle3)

(export deg->rad rad->deq)

(import (scheme base)
(scheme inexact))

(include "angle3.scm")) ;; path is relative to angle3.sld file

D file: angle3/angle3.scm
(define factor (/ (atan 1) 45))

Chapter 7: Modules 88

(define (deg->rad x) (* x factor))
(define (rad->deg x) (/ x factor))

7.4.1 lIdentifying libraries

Each library is given a name so that it can be referred to in various contexts, most notably
in import forms and the interpreter’s and compiler’s command line. The R7RS defines a
library name as a list whose members are identifiers and exact non-negative integers, for
example (widget), (_hamt), (scheme base), and (srfi 64).

The system maps these R7TRS library names to module identifiers that are symbols
formed by concatenating the parts of the library name separated with /. The library name
and module name are interchangeable. Consequently, (import srfi/64) and (import
_hamt) are respectively equivalent to (import (srfi 64)) and (import (_hamt)).
Using the module name to identify libraries on the command line is convenient as it avoids
having to escape parentheses and spaces.

7.4.2 The define-library form

(define-1library name declaration .. .) special form
In a library definition name specifies the name of the library and declaration is one of:

(export <export spec> ...)

(import <import set> ...)

(begin <command or definition> ...)
(include <filename> ...)

(include-ci <filename> ...)
(include-library-declarations <filename> ...)
(cond—-expand <cond expand features> .. .)
(namespace <namespace>)

(cc—options <options> ...)

(ld-options <options> ...)
(l1d-options—prelude <options> ...)
(pkg—config <options> ...)
(pkg-config-path <path> ...)

7.4.3 (export <export spec> ...)

An export declaration specifies a list of identifiers which can be made visible to other
libraries or programs. An <export spec> takes one of the following forms:

<identifier>
(rename <identifier>1 <identifier>2)

In an <export spec>, an <identifier> names a single binding (variable or macro) defined
within or imported into the library, where the external name for the export is the same as
the name of the binding within the library. A rename spec exports the binding defined
within or imported into the library and named by <identifier>1 in each (<identifier>1
<identifier>2) pairing, using <identifier>2 as the external name.

7.4.4 (import <import set> ...)

A library declares a dependency to another library with the import declaration. The
(import <import set> ...) form identifies the imported library or libraries.

Chapter 7: Modules 89

Each <import set> names a set of bindings from a library and possibly specifies local
names for the imported bindings. An <import set> takes one of the following forms:

<library name>

(only <import set> <identifier> ...)

(except <import set> <identifier> ...)

(prefix <import set> <identifier>)

(rename <import set> (<identifier>1 <identifier>2) ...)

In the first form, all of the identifiers in the named library’s export clauses are imported
with the same names (or the exported names if exported with rename). The additional
<import set> forms modify this set as follows:

e only produces a subset of the given <import set> including only the listed identifiers
(after any renaming). It is an error if any of the listed identifiers are not found in the
original set.

e except produces a subset of the given <import set>, excluding the listed identifiers
(after any renaming). It is an error if any of the listed identifiers are not found in the
original set.

e rename modifies the given <import set>, replacing each instance of <identifier>1 with
<identifier>2. It is an error if any of the listed <identifier>1s are not found in the
original set.

e prefix automatically renames all identifiers in the given <import set>, prefixing each
with the specified <identifier>.

It is an error to import the same identifier more than once with different bindings, or to
redefine or mutate an imported binding with a definition or with set!, or to refer to an
identifier before it is imported.

As an extension to the R7RS syntax it is allowed for a <library name> to contain
a trailing Q@version when the library is hosted in a git repository. The version must
match a tag of that repository and it indicates the specific library version required. For
example, (import (github.com/gambit hello @1.0)) or equivalently (import
github.com/gambit/hello@1.0). Note that the version specifier is not separated
with a / in the module name.

Another extension to the R7RS syntax when the library is hosted in a git repository
is the use of dots before the name of the library to indicate a relative reference within
the repository. The number of dots indicates the number of parent hops. For example, in
the library (github.com/gambit hello demo) an (import (.. hello)) will resolve
to the (github.com/gambit hello) library. A relative library reference should not
contain an explicit @version because the version is implicitly the same as the referring
module.

7.4.5 (begin <command or definition> ...), (include <filename>
...), and (include-ci <filename> ...)

The begin, include, and include-ci declarations are used to specify the body of
the library. They have the same syntax and semantics as the corresponding expression
types. This form of begin is analogous to, but not the same as, the two types of begin
expressions.

Chapter 7: Modules 90

7.4.6 (include-library-declarations <filename> ...)

The include-library-declarations declaration is similar to include except that
the contents of the file are spliced directly into the current library definition. This can be
used, for example, to share the same export declaration among multiple libraries as a
simple form of library interface.

7.4.7 (cond-expand <cond expand features> ...)

The cond-expand declaration has the same syntax and semantics as the cond-expand
expression type, except that it expands to spliced-in library declarations rather than ex-
pressions enclosed in begin.

7.4.8 Extensions to the R7RS library declarations

The (namespace <namespace>) declaration allows overriding the namespace used for the
library. This is mainly useful for system libraries to prevent namespace prefixing using a
(namespace "") declaration.

The remaining declarations are relevant to the C target and ignored otherwise. They
provide information, in the form of strings, to be passed to the compiler options of the same
name when this library is compiled:

e (cc-options <options> ...)

e (ld-options <options> ...)

(
(
e (ld-options-prelude <options> ...)
(pkg—config <options> ...)

(

e (pkg-config-path <path> ...)

For example, a library could force the C compiler to generate machine code for 1386
with:
(define-library (foo)
(export bar)
(import (scheme base))
(cc-options "-march=i386") ;; request compilation for 1386
(begin (define (bar) 42)))

7.5 Installing Modules

When a module is imported, the processing of the import form must locate and read the
source code of the module at macro expansion time to determine which names are exported
and to what they are mapped. The list of module search directories ("~ 1ib followed by
“~“userlib by default) is searched to find the module’s source code. At execution time the
same search algorithm is used to locate and load the module, either in source code form or
compiled form. The ~~1ib directory is where the system’s builtin modules are put when
Gambit is installed. The “~“userlib directory is a convenient place where other modules
can be installed by the user because locating them does not require extending the list of
module search directories.

(module—-search—-order—-reset!) procedure
(module—search—-order—add! dir) procedure
The list of module search directories can be modified using the procedures
module—search-order-reset! and module-search-order—-add! that

Chapter 7: Modules 91

respectively clear the list and extend the list with the directory dir which must be a
string. The list can also be extended by using the —:search=DIR runtime option
or by a command line argument to gsi and gsc that ends with a path separator or
a ‘.’ (see Section 7.2.1 [##demand-module and ##supply-module forms|, page 77).

For example:

$ cat foobar.sld
(define-library (foobar)
(import (scheme write))
(begin (display "foobar library has executed\n")))
$ gsi
Gambit v4.9.4

> (import (foobar))

**% ERROR IN (stdin)@1.9 -- Cannot find library (foobar)
> (module-search-order-add! ".")

> (import (foobar))

foobar library has executed

> .9

$ gsi —-:search=. foobar

foobar library has executed

$ gsi . foobar

foobar library has executed

(module—-whitelist—reset!) procedure

(module—-whitelist—add! source) procedure
When modules are installed it is done at the granularity of a package, which is defined
as a git repository possibly containing more than one module. For example, if the
hosted module github.com/gambit/hello/demo needs to be installed it is all of
the code at github.com/gambit/hello that is installed (this includes the three
modules github.com/gambit/hello, github.com/gambit/hello/demo,
and github.com/gambit/hello/test).

For convenience the runtime system will automatically install in the " “userlib di-
rectory any hosted module that is from a trusted source. The whitelist of trusted
sources, which initially contains only github.com/gambit, can be modified us-
ing the procedures module-whitelist-reset! and module-whitelist-add!
that respectively clear the list and extend the list with the source source which must
be a string. The list can also be extended with the —:whitelist=SOURCE runtime
option.

For example:

$ gsi github.com/gambit/hello/demo # auto-install of github.com/gambit/hello pack-
age

People customarily greet each other when they meet.

In English you can say: hello Bob, nice to see you!

In French you can say: bonjour Bob, je suis enchanté!

Demo source code: /Users/feeley/.gambit_userlib/github.com/gambit/hello/@/demc
$ gsi github.com/feeley/roman/demo # no auto-install because not on whitelist

*** ERROR IN ##main —-—- No such file or directory

(load "github.com/feeley/roman/demo")

gsi -:whitelist=github.com/feeley github.com/feeley/roman/demo

is I in roman numerals

is ITI in roman numerals

is IV in roman numerals

SN =

Chapter 7: Modules 92

8 is VIII in roman numerals

16 is XVI in roman numerals

32 is XXXII in roman numerals

64 is LXIV in roman numerals

$ gsi github.com/feeley/roman/demo # OK because module is now installed
1 is I in roman numerals

2 is II in roman numerals

4 is IV in roman numerals

8 is VIII in roman numerals

16 is XVI in roman numerals

32 is XXXII in roman numerals

64 is LXIV in roman numerals

$ gsi github.com/feeley/roman/test # the test module was also installed
**%% all tests passed out of a total of 19 tests

The use of the runtime option —:whitelist= (with no SOURCE) will disable the
automatic installation of modules, even from github.com/gambit. For example:

$ gsi -:whitelist= github.com/gambit/hello/demo
*** ERROR IN ##main —-— No such file or directory
(load "github.com/gambit/hello/demo")

A manual management of packages is nevertheless possible with the gsi package man-
agement operations. These are invoked with the command line options ‘-install’,
‘—~uninstall’, and ‘—update’ which respectively install, uninstall and update pack-
ages. The package management operations accept a list of packages. Packages are
installed in ~~“userlib which is mapped to ~/.gambit_userlib by default. An
optional ‘~dir dir’ option can be used to install the package in some other directory.

For example:

$ gsi -install github.com/feeley/roman

installing github.com/feeley/roman to /Users/feeley/.gambit_userlib/
gsi github.com/feeley/roman/demo

is I in roman numerals

is II in roman numerals

is IV in roman numerals

8 is VIII in roman numerals

16 is XVI in roman numerals

32 is XXXII in roman numerals

64 is LXIV in roman numerals

$ gsi -uninstall github.com/feeley/roman

uninstalling github.com/feeley/roman from /Users/feeley/.gambit_userlib/
$ gsi -install -dir “/mylibs github.com/feeley/roman
installing github.com/feeley/roman to /Users/feeley/mylibs
gsi "/mylibs/ github.com/feeley/roman/demo

is I in roman numerals

is ITI in roman numerals

is IV in roman numerals

8 is VIII in roman numerals

16 is XVI in roman numerals

32 is XXXII in roman numerals

64 is LXIV in roman numerals

SN =

SN =

Local git repositories can also be installed manually with the package management
operations using a path to the local repository. This can be useful during the devel-
opment phase before a library becomes hosted.

For example:
$ mkdir some

Chapter 7: Modules 93

$ mkdir some/dir

$ mkdir some/dir/mylib

$ cd some/dir/mylib

$ cat > mylib.sld

(define-library (mylib)

(import (scheme write))
(begin (display "mylib library has executed\n")))

$ git init

Initialized empty Git repository in /Users/feeley/doc/some/dir/mylib/.git/
$ git add mylib.sld

$ git commit -m "first commit"

[master (root-commit) c3feaff] first commit

1 file changed, 3 insertions(+)

create mode 100644 mylib.sld

Sed ../../..

$ gsi some/dir/ mylib # execution of mylib without installation
mylib library has executed

$ gsi —-install some/dir/mylib

installing some/dir/mylib to /Users/feeley/.gambit_userlib/
$ gsi mylib # execution of mylib after installation
mylib library has executed

7.6 Compiling Modules

When gsc finds a command line argument that is the name of a module found on the list
of module search order directories (after an automatic installation if that is appropriate)
that module’s main source code file will be compiled.

When a dynamic compilation is requested (which is the default compilation mode and
when the command line option —~dynamic is used) the compiler will compile for the selected
target the main source code file to a target file and a dynamically loadable object file with a
‘.01’ extension. These files will be created in a directory next to the module’s main source
code file, with the same name stripped of it’s extension and suffixed with the Gambit version
and the target name. This naming strategy aims to avoid loading the compiled file in an
inappropriate context. The module loading algorithm knows it should check this directory
to find a compiled version of the module.

For example:

$ mkdir libl 1lib2
$ cat > 1libl/1libl.sld
(define-library (1libl)
(export fact)
(import (scheme base) (scheme write))
(begin
(define (fact n) (if (<=n l1l) 1 (* n (fact (- n 1)))))
(display "1libl loaded\n")))
$ cat > 1lib2/1ib2.sld
(define-library (1ib2)
(import (l1ibl) (scheme base) (scheme write))

(begin
(display
(cond—-expand
((compilation-target C) "1lib2 compiled to C\n")
((compilation-target (_)) "1lib2 interpreted\n")
(else "1lib2 compiled to other\n")))

(display (fact 10))
(newline)))

Chapter 7: Modules 94

$ gsi . 1lib2 # loads lib1.sld and lib2.sld
libl loaded
1ib2 interpreted
3628800
libl
$ tree —--charset=ascii —--noreport 1libl 1lib2
‘—— 1libl.sld
1ib2
‘—— 1lib2.sld
$ gsc . 1libl 1lib2 # compile lib1.sld and lib2.sld using C target
$ gsi . lib2 # loads generated lib1.01 and lib2.01
libl loaded
1ib2 compiled to C
3628800
$ gsc —-target js . 1libl 1lib2 # also compile them for js target
$ tree —--charset=ascii —--noreport 1libl 1lib2
1libl
|-— 1libl.sld
|-— 1iblQ@gambit409003@C
\ |-— libl.c
\ ‘-— libl.ol
‘-— 1libl@gambit409003@Jjs
|-— 1libl.Js
‘-— libl.ol

|-— lib2.sld
|-—— 1ib2@gambit409003@C
| |-— 1lib2.c
| ‘—— 1ib2.01
‘—-— 1ib2@gambit409003@7js
|-— 1ib2.7s
‘—— 1ib2.01

To create an executable program from a set of non-legacy modules it is important to
use the —nopreload linking option when linking so that the modules will be initialized in
an order that is consistent with the module dependencies. If the default -preload linking
option is used some modules may be initialized out of order, leading to incorrect execution.

Here is an example that extends the previous example:

$ gsc —exe —-nopreload . 1libl/libl.sld 1ib2/1ib2.sld

$ 1lib2/1ib2

1ibl loaded

1ib2 compiled to C

3628800

$ gsc —-target js —-exe -nopreload . 1libl/1libl.sld 1ib2/1ib2.sld
$ 1lib2/1ib2

1ibl loaded

1ib2 compiled to other

3628800

Chapter 8: Built-in data types 95

8 Built-in data types

8.1 Numbers

8.1.1 Extensions to numeric procedures

(= zl1...) procedure
(< x1...) procedure
(> x1...) procedure
(<= x1...) procedure
(>=x1...) procedure

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of numbers 1st is sorted in nondecreasing order can be done
with the call (apply < 1lst).

8.1.2 IEEE floating point arithmetic

To better conform to IEEE floating point arithmetic the standard numeric tower is extended
with these special inexact reals:

+inf.0 positive infinity
-inf.0 negative infinity
+nan.0 “not a number”
-0. negative zero (‘0.’ is the positive zero)

The infinities and “not a number” are reals (i.e. (real? +inf.0) is #t) but are not
rational (i.e. (rational? +inf.0) is #f).

Both zeros are numerically equal (i.e. (= -0. 0.) is #t) but are not equivalent (i.e.
(eqv? -0. 0.) and (equal? -0. 0.) are #f). All numerical comparisons with “not a
number”, including (= +nan.0 +nan.0), are #f.

8.1.3 Integer square root and nth root

(integer-sqgrt n) procedure
This procedure returns the integer part of the square root of the nonnegative exact
integer n.

For example:

> (integer-sqrt 123)
11

(integer-nth-root nl n2) procedure
This procedure returns the integer part of nl raised to the power 1/n2, where nl is
a nonnegative exact integer and n2 is a positive exact integer.
For example:

> (integer—-nth-root 100 3)
4

Chapter 8: Built-in data types 96

8.1.4 Bitwise-operations on exact integers

The procedures defined in this section are compatible with the withdrawn “Integer Bitwise-
operation Library SRFI” (SRFI 33). Note that some of the procedures specified in SRFI
33 are not provided.

Most procedures in this section are specified in terms of the binary representation of exact
integers. The two’s complement representation is assumed where an integer is composed
of an infinite number of bits. The upper section of an integer (the most significant bits)
are either an infinite sequence of ones when the integer is negative, or they are an infinite
sequence of zeros when the integer is nonnegative.

(arithmetic—-shift nl n2) procedure
This procedure returns nl shifted to the left by n2 bits, that is (floor (* nl (expt
2 n2))). Both nl and n2 must be exact integers.
For example:
> (arithmetic-shift 1000 7) ; nl=...0000001111101000

128000
> (arithmetic-shift 1000 -6) ; ni=...0000001111101000
15
> (arithmetic-shift -23 -3) yml=...1111111111101001
-3
(bitwise-merge nl n2 n3) procedure

This procedure returns an exact integer whose bits combine the bits from n2 and n3
depending on nl. The bit at index i of the result depends only on the bits at index i
in nl1, n2 and n3: it is equal to the bit in n2 when the bit in nl is 0 and it is equal
to the bit in n3 when the bit in nl is 1. All arguments must be exact integers.

For example:
> (bitwise-merge -4 -11 10) ;...11111100 ...11110101 ...00001010

9
> (bitwise-merge 12 -11 10) ;...00001100 ...11110101 ...00001010
=7
(bitwise—and n...) procedure
This procedure returns the bitwise “and” of the exact integers n. ... The value -1 is

returned when there are no arguments.

For example:

> (bitwise—and 6 12) ;...00000110 ...00001100
f (bitwise—and 6 -4) ;...00000110 ...11111100
i (bitwise—and -6 -4) ;..11111010 ...11111100
;8 (bitwise—and)
-1
(bitwise—andcl nl n2) procedure

This procedure returns the bitwise “and” of the bitwise complement of the exact
integer nl and the exact integer n2.

For example:

Chapter 8: Built-in data types 97

> (bitwise—andcl 11 26) ;...00001011 ...00011010
16
> (bitwise—andcl -12 26) ;...11110100 ...00011010
10
(bitwise—andc2 nl n2) procedure

This procedure returns the bitwise “and” of the exact integer nl and the bitwise
complement of the exact integer n2.

For example:

> (bitwise-andc2 11 26) ;...00001011 ...00011010
1
> (bitwise—andc2 11 -27) ;...00001011 ...11100101
10
(bitwise-eqv n...) procedure
This procedure returns the bitwise complement of the bitwise “exclusive-or” of the
exact integers n. ... The value -1 is returned when there are no arguments.
For example:
> (bitwise—eqv 6 12) ;...00000110 ...00001100
-11
> (bitwise—eqv 6 -4) ; ...00000110 ...11111100
5
> (bitwise-eqv -6 -4) ; ...11111010...11111100
=7
> (bitwise-eqv)
-1
(bitwise—ior n...) procedure
This procedure returns the bitwise “inclusive-or” of the exact integers n.... The

value 0 is returned when there are no arguments.

For example:

> (bitwise-ior 6 12) ;...00000110 ...00001100
i4(bitwise—ior 6 —4) ;..00000110 ...11111100
;2 (bitwise—ior -6 -—-4) ;..11111010 ...11111100
;2 (bitwise-ior)
0
(bitwise—nand nl n2) procedure

This procedure returns the bitwise complement of the bitwise “and” of the exact
integer nl and the exact integer nZ2.

For example:

> (bitwise—-nand 11 26) ;...00001011 ...00011010
-11
> (bitwise—nand 11 -27) ;...00001011 ...11100101
-2
(bitwise—nor nl n2) procedure

This procedure returns the bitwise complement of the bitwise “inclusive-or” of the
exact integer nl and the exact integer n2.

For example:

Chapter 8: Built-in data types 98

> (bitwise—-nor 11 26) ;...00001011 ...00011010
-28
> (bitwise—nor 11 -27) ;...00001011 ...11100101
16
(bitwise—not n) procedure

This procedure returns the bitwise complement of the exact integer n.

For example:

> (bitwise-not 3) ; ...00000011
-4
> (bitwise-not -1) ;...11111111
0
(bitwise-orcl nl n2) procedure

This procedure returns the bitwise “inclusive-or” of the bitwise complement of the
exact integer nl and the exact integer n2.

For example:

> (bitwise-orcl 11 26) ;...00001011 ...00011010
-2
> (bitwise-orcl -12 26) ;...11110100 ...00011010
27
(bitwise—-orc2 nl n2) procedure

This procedure returns the bitwise “inclusive-or” of the exact integer nl and the
bitwise complement of the exact integer n2.

For example:

> (bitwise-orc2 11 26) ;...00001011 ...00011010
-17
> (bitwise-orc2 11 -27) ;...00001011 ...11100101
27
(bitwise—-xor n...) procedure
This procedure returns the bitwise “exclusive-or” of the exact integers n.... The

value 0 is returned when there are no arguments.

For example:

> (bitwise-xor 6 12) ;...00000110 ...00001100
io (bitwise—-xor 6 -4) ;...00000110 ...11111100
;6(bitwise—xor -6 -4) ;..11111010 ...11111100
S (bitwise—-xor)
0
(bit—-count n) procedure

This procedure returns the bit count of the exact integer n. If n is nonnegative, the
bit count is the number of 1 bits in the two’s complement representation of n. If n is
negative, the bit count is the number of 0 bits in the two’s complement representation
of n.

For example:

Chapter 8: Built-in data types

(bit-count
(bit-count
(bit-count
(bit-count
(bit-count

(bit-count

WV ELEVNMNVEYVEYV OV

(integer—-length n)

0)
1)
2)
3)
4)

-23)

g e

...00000000

;...00000001

...00000010

;...00000011

;...00000100

11101001

99

procedure

This procedure returns the bit length of the exact integer n. If n is a positive integer
the bit length is one more than the index of the highest 1 bit (the least significant bit
is at index 0). If n is a negative integer the bit length is one more than the index of
the highest 0 bit. If n is zero, the bit length is 0.

For example:

\4

OV WV NVNDVEVO

(bit—-set? nl n2)

(integer-length
(integer-length
(integer-length
(integer-length
(integer-length

(integer-length

; ...00000000
; ...00000001
;5 ...00000010
; ...00000011

; ...00000100

-23) ;...11101001

procedure

This procedure returns a boolean indicating if the bit at index nl of n2 is set (i.e.
equal to 1) or not. Both nl and n2 must be exact integers, and nl must be nonneg-

ative.

For example:

> (map (lambda (i)

(bit-set? i -23))

(7 6 543210))
(#t #t #t #f #t #f #f #t)

(any-bits—-set? nl n2)
This procedure returns a boolean indicating if the bitwise and of n1 and nZ2 is different
from zero or not. This procedure is implemented more efficiently than the naive

definition:

(define (any-bits-set? nl n2) (not (zero?

For example:

> (any-bits-set? 5 10) ;...00000101 ...00001010

#£

> (any-bits-set? -23 32) ;..11101001 ...00100000

#t

;...11101001

procedure

(bitwise—-and nl n2))))

Chapter 8: Built-in data types 100

(all-bits—set? nl n2) procedure

This procedure returns a boolean indicating if the bitwise and of nl and n2 is equal to
nl or not. This procedure is implemented more efficiently than the naive definition:
(define (all-bits-set? nl n2) (= nl (bitwise—and nl n2)))

For example:
> (all-bits-set? 1 3) ;...00000001 ...00000011

#t
> (all-bits-set? 7 3) ;...00000111 ...00000011
#f
(first—-set-bit n) procedure

(
(
(
(
(

This procedure returns the bit index of the least significant bit of n equal to 1 (which
is also the number of 0 bits that are below the least significant 1 bit). This procedure
returns —1 when n is zero.

For example:
> (first-set-bit 24) ;...00011000

3

> (first-set-bit 0) ; ...00000000

-1
extract-bit-field nl n2 n3) procedure
test-bit-field? nl n2 n3) procedure
clear-bit—-field nl n2 n3) procedure
replace-bit-field nl n2 n3 n4) procedure
copy-bit-field nl n2 n3 n4) procedure

These procedures operate on a bit-field which is n1 bits wide starting at bit index n2.
All arguments must be exact integers and nl and n2 must be nonnegative.

The procedure extract-bit-field returns the bit-field of n3 shifted to the right
so that the least significant bit of the bit-field is the least significant bit of the result.

The procedure test-bit-field? returns #t if any bit in the bit-field of n3 is equal
to 1, otherwise #f is returned.

The procedure clear—-bit—field returns n3 with all bits in the bit-field replaced
with 0.

The procedure replace-bit-field returns n4 with the bit-field replaced with the
least-significant nl bits of n3.

The procedure copy-bit-field returns n4 with the bit-field replaced with the
(same index and size) bit-field in n3.

For example:

> (extract-bit-field 5 2 -37) ;... 11011011
32 (test-bit-field? 5 2 -37) ;...11011011
ﬁt (test-bit-field? 1 2 -37) ;...11011011
ﬁf(clear—bit—field 5 2 =37) ;...11011011
;lz(ieplace—bit—field 52 -6 -37) ;..11111010 ...11011011
;Zl(copy—bit—field 52 -6 -37) ;...11111010 ...11011011

-5

Chapter 8: Built-in data types

8.1.5 Fixnum specific operations

(fixnum? obj)

(fx* nl...)
(fx+ nl...)
(fx—= nl n2...)

(fx< nl...)

(fx<= nl...)

(fx= nl...)

(fx> nl...)

(fx>= nl...)

(fxabs n)

(fxand nl...)

(fxandcl nl n2)

(fxandc?2 nl n2)
(fxarithmetic—shift nl n2)
(fxarithmetic—shift-left nl n2)
(fxarithmetic-shift-right nl n2)
(fxbit-count n)
(fxbit—-set? nl n2)

(fxeqgv nl...)

(fxeven? n)
(fxfirst—-set-bit n)

(fxif nl n2 n3)

(fxior nl...)

(fxlength n)

(fxmax nl n2...)

(fxmin nl n2...)

(fxmodulo nl n2)
(fxnegative? n)

(fxnand nl n2)

(fxnor nl n2)

(fxnot n)

101

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

Chapter 8: Built-in data types

fxodd? n)
fxorcl nl n2)
fxorc2 nl n2)

fxpositive? n)

(

(

(

(

(fxquotient nl n2)
(fxremainder nl n2)
(fxwrap* nl...)
(fxwrap+ nl...)
(fxwrap— nl n2...)
(

fxwrapabs n)

fxwraparithmetic-shift nl n2)

fxwraparithmetic-shift-left nl n2)

fxwraplogical-shift-

fxwrapquotient nl n2)

fxxor nl...)

fxsquare n)

fxwrapsquare n)

right nl n2)

fixnum-overflow—exception? obj)

fixnum-overflow—-exception—-procedure exc)
fixnum-overflow-exception—arguments exc)

(
(
(
(
(
(fxzero? n)
(
(
(
(
(

102

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
procedure

Fixnum-overflow-exception objects are raised by some of the fixnum specific proce-
dures when the result is larger than can fit in a fixnum. The parameter exc must be
a fixnum-overflow-exception object.

The procedure fixnum-overflow-exception? returns #t when obj is a fixnum-
overflow-exception object and #f otherwise.

The procedure fixnum-overflow-exception-procedure returns the proce-

dure that raised exc.

The procedure fixnum-overflow—exception—arguments returns the list of ar-
guments of the procedure that raised exc.

For example:

> (define (handler exc)

(if (fixnum-overflow—-exception? exc)
(list (fixnum-overflow-exception-procedure exc)

(fixnum-overflow—-exception—arguments exc))

"not-fixnum-overflow-exception))

> (with—exception-catcher

handler
(lambda ()

(£x* 100000 100000)))

(#<procedure #2 fx*> (100000 100000))

Chapter 8: Built-in data types 103

8.1.6 Flonum specific operations

(flonum? obj) procedure
(fixnum—->flonum n) procedure
(f1* x1...) procedure
(f1+ x1...) procedure
(fl- x1 x2...) procedure
(fl/ x1 x2) procedure
(fl< x1...) procedure
(fl<=x1...) procedure
(fl= x1...) procedure
(f1> x1...) procedure
(fl>= x1...) procedure
(flabs x) procedure
(flacos x) procedure
(flasin x) procedure
(flatan x) procedure
(flatan y x) procedure
(flceiling x) procedure
(flcos x) procedure
(fldenominator x) procedure
(fleven? x) procedure
(flexp x) procedure
(flexpt xy) procedure
(flhypot xy) procedure
(flfinite? x) procedure
(flfloor x) procedure
(flinfinite? x) procedure
(flinteger? x) procedure
(fllog x) procedure
(flmax xI x2...) procedure
(flmin xI x2...) procedure
(flnan? x) procedure

(flnegative? x) procedure

Chapter 8: Built-in data types 104

(flnumerator x) procedure
(flodd? x) procedure
(flpositive? x) procedure
(flround x) procedure
(flsin x) procedure
(flsgrt x) procedure
(fltan x) procedure
(fltruncate x) procedure
(flzero? x) procedure
(£1+* xI x2 x3) procedure
(flacosh x) procedure
(flasinh x) procedure
(flatanh x) procedure
(flcosh x) procedure
(flexpml x) procedure
(flilogb x) procedure
(flloglp x) procedure
(flscalbn x) procedure
(flsinh x) procedure
(flsquare x) procedure
(fltanh x) procedure

8.1.7 Pseudo random numbers

The procedures and variables defined in this section are compatible with the “Sources
of Random Bits SRFI” (SRFI 27). The implementation is based on Pierre L’Ecuyer’s
MRG32k3a pseudo random number generator. At the heart of SRFI 27’s interface is the
random source type which encapsulates the state of a pseudo random number generator.
The state of a random source object changes every time a pseudo random number is gen-
erated from this random source object.

default-random—-source variable
The global variable default-random-source is bound to the random source ob-
ject which is used by the random-integer, random-real, random—-u8vector
and random-f64vector procedures.

(random—-integer n) procedure
This procedure returns a pseudo random exact integer in the range 0 to n-1. The
random source object in the global variable default-random-source is used to
generate this number. The parameter n must be a positive exact integer.

For example:

Chapter 8: Built-in data types 105

> (random—-integer 100)

24

> (random—-integer 100)

2

> (random-integer 100)
6143360270902284438072426748425263488507

(random—real) procedure
This procedure returns a pseudo random inexact real between, but not including, 0
and 1. The random source object in the global variable default-random-source
is used to generate this number.

For example:

> (random-real)
.24230672079133753
> (random-real)
.02317001922506932

(random-u8vector n) procedure
This procedure returns a u8vector of length n containing pseudo random exact integers
in the range 0 to 255. The random source object in the global variable default-
random-source is used to generate these numbers. The parameter n must be a
nonnegative exact integer.

For example:

> (random—u8vector 10)
#u8 (200 53 29 202 3 85 208 187 73 219)

(random—f64vector n) procedure
This procedure returns a f64vector of length n containing pseudo random inexact reals
between, but not including, 0 and 1. The random source object in the global variable
default-random-source is used to generate these numbers. The parameter n
must be a nonnegative exact integer.

For example:

> (random-f64vector 3)
#£64(.7145854494613069 .47089632669147946 .54001248751827406)

(make-random—-source) procedure
This procedure returns a new random source object initialized to a predetermined
state (to initialize to a pseudo random state the procedure random-source-
randomize! should be called).

For example:

> (define rs (make-random-source))
> ((random-source-make-integers rs) 10000000)
8583952

(random—-source? obj) procedure
This procedure returns #t when obj is a random source object and #f otherwise.

For example:
> (random-source? default-random-source)
#t
> (random-source? 123)
#£

Chapter 8: Built-in data types 106

(random—source—-state—-ref random-source) procedure

(random—-source-state—set ! random-source state) procedure
The procedure random-source-state-ref extracts the state of the random
source object random-source and returns a vector containing the state.

The procedure random-source-state-set! restores the state of the random
source object random-source to state which must be a vector returned from a call to
the procedure random-source-state-ref.

For example:

> (define s (random-source-state-ref default-random-source))
> (random—-integer 100)
7583880188903074396261960585615270693321

> (random—-source-state-set! default-random-source s)

> (random-integer 100)
7583880188903074396261960585615270693321

(random—source—-randomize! random-source) procedure

(random-source-pseudo-randomize! random-source i j) procedure
These procedures change the state of the random source object random-source. The
procedure random-source-randomize! sets the random source object to a state
that depends on the current time (which for typical uses can be considered to ran-
domly initialize the state). The procedure random-source-pseudo-randomize!!
sets the random source object to a state that is determined only by the current state
and the nonnegative exact integers i and j. For both procedures the value returned
is unspecified.

For example:

> (define s (random-source-state-ref default-random-source))

> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-state-set! default-random-source s)

> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-state-set! default-random-source s)

> (random—-source-randomize! default-random-source)

> (random-integer 100)
2271441220851914333384493143687768110622

> (random-source-state-set! default-random-source s)

> (random-source-randomize! default-random-source)

> (random-integer 100)
6247966138948323029033944059178072366895

(random-source-make—-integers random-source) procedure
This procedure returns a procedure for generating pseudo random exact integers using
the random source object random-source. The returned procedure accepts a single
parameter n, a positive exact integer, and returns a pseudo random exact integer in
the range 0 to n-1.

For example:

Chapter 8: Built-in data types 107

> (define rs (make-—-random-source))

> (define ri (random-source-make-integers rs))
> (ri 10000000)

8583952

> (ri 10000000)

2879793

(random-source-make-reals random-source [precision]) procedure
This procedure returns a procedure for generating pseudo random inexact reals using
the random source object random-source. The returned procedure accepts no param-
eters and returns a pseudo random inexact real between, but not including, 0 and 1.
The optional parameter precision specifies an upper bound on the minimum amount
by which two generated pseudo-random numbers can be separated.

For example:

> (define rs (make-random-source))

> (define rr (random—-source-make-reals rs))
> (rr)

.857402537562821

> (rr)

.2876463473845367

(random-source-make-u8vectors random-source) procedure
This procedure returns a procedure for generating pseudo random u8vectors using the
random source object random-source. The returned procedure accepts a single pa-
rameter n, a nonnegative exact integer, and returns a u8vector of length n containing
pseudo random exact integers in the range 0 to 255.

For example:

> (define rs (make-—-random-source))

> (define rv (random—-source-make-u8vectors rs))
> (rv 10)

#u8 (200 53 29 202 3 85 208 187 73 219)

> (rv 10)

#u8 (113 8 182 120 138 103 53 192 40 176)

(random-source-make-f64vectors random-source [precision|) procedure
This procedure returns a procedure for generating pseudo random f64vectors using
the random source object random-source. The returned procedure accepts a sin-
gle parameter n, a nonnegative exact integer, and returns an f64vector of length n
containing pseudo random inexact reals between, but not including, 0 and 1. The
optional parameter precision specifies an upper bound on the minimum amount by
which two generated pseudo-random numbers can be separated.

For example:

> (define rs (make-random-source))

> (define rv (random-source-make-fé64vectors rs))

> (rv 3)

#£64(.7342236104231586 .2876463473845367 .8574025375628211)

> (rv 3)

#£64 (.013863292728449427 .33449296573515447 .8162050798467028)

8.2 Booleans

Chapter 8: Built-in data types 108

8.3 Pairs and lists
8.4 Symbols and keywords

8.5 Characters and strings

Gambit supports the Unicode character encoding standard. Scheme characters can be any
of the characters whose Unicode encoding is in the range 0 to #x10ffff (inclusive) but not in
the range #xd800 to #xdfff. Source code can also contain any Unicode character, however
to read such source code properly gsi and gsc must be told which character encoding to
use for reading the source code (i.e. ISO-8859-1, UTF-8, UTF-16, etc). This can be done

by specifying the runtime option ° ’ ¢

—:file-settings=..." or ‘—:io-settings=...’
when gsi and gsc are started.

8.6 Extensions to character procedures

(char—->integer char) procedure
(integer->char n) procedure
The procedure char—>integer returns the Unicode encoding of the character char.

The procedure integer—->char returns the character whose Unicode encoding is
the exact integer n.

For example:

> (char—->integer #\!)

33

> (integer->char 65)

#\A

> (integer->char (char->integer #\ul234))

#\ul234

> (integer->char #xd800)

**% ERROR IN (console)@4.1 -- (Argument 1) Out of range

(integer—->char 55296)

(char=? charl...) procedure
(char<? charl...) procedure
(char>? charl...) procedure
(char<=? charl) procedure
(char>=? charl...) procedure
(char—-ci=> charl .) procedure
(char—-ci<? charl...) procedure
(char—-ci>? charl...) procedure
(char—-ci<=? charl .) procedure
(char—-ci>=? charl...) procedure

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of characters 1st is sorted in nondecreasing order can be done
with the call (apply char<? 1lst).

Chapter 8: Built-in data types 109

8.7 Extensions to string procedures

(string=? stringl...) procedure
(string<? stringl...) procedure
(string>? stringl...) procedure
(string<=? stringl...) procedure
(string>=? stringl...) procedure
(string—ci=? stringl...)