% This program by D. E. Knuth is not copyrighted and can be used freely. % Version 0.0 was more-or-less debugged on June 4, 1985. % Version 0.1 improved formatting of : and added \\ (June 15, 1985). % Version 0.2 improved formatting of good, fixed @@ bug (August 4, 1985). % Version 0.3 fixed minor bug in change_file move (August 30, 1985). % Version 0.4 fixed minor bug regarding empty comments (April 8, 1989). % Version 1.0 was tuned up for the METAFONTware report (April 16, 1989). % Version 1.1 ditto, with input handled by Hosek's idea (April 27, 1989). % Version 2 has the new primitives of METAFONT 2.0 (October 16, 1989). % Version 2.1 corrects two of those primitives (January 20, 2021). % Here is TeX material that gets inserted after \input webmac \def\hang{\hangindent 3em\indent\ignorespaces} \font\ninerm=cmr9 \let\mc=\ninerm % medium caps for names like SAIL \def\PASCAL{Pascal} \font\logo=manfnt % font used for the METAFONT logo \def\MF{{\logo META}\-{\logo FONT}} \def\pb{$\.|\ldots\.|$} % MF brackets (|...|) \def\v{\.{\char'174}} % vertical (|) in typewriter font \def\dleft{[\![} \def\dright{]\!]} % double brackets \mathchardef\RA="3221 % right arrow \mathchardef\BA="3224 % double arrow \def\({} % kludge for alphabetizing certain module names \def\title{MFT} \def\contentspagenumber{401} \def\topofcontents{\null \titlefalse % include headline on the contents page \def\rheader{\mainfont\hfil \contentspagenumber} \vfill \centerline{\titlefont The {\ttitlefont MFT} processor} \vskip 15pt \centerline{(Version 2.1, January 2021)} \vfill} \def\botofcontents{\vfill \centerline{\hsize 5in\baselineskip9pt \vbox{\ninerm\noindent The preparation of this report was supported in part by the National Science Foundation under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System Development Foundation. `\TeX' is a trademark of the American Mathematical Society. `{\logo hijklmnj}\kern1pt' is a trademark of Addison-Wesley Publishing Company.}}} \pageno=\contentspagenumber \advance\pageno by 1 @* Introduction. This program converts a \MF\ source file to a \TeX\ file. It was written by D.~E. Knuth in June, 1985; a somewhat similar {\mc SAIL} program had @^Knuth, Donald Ervin@> been developed in January, 1980. The general idea is to input a file called, say, \.{foo.mf} and to produce an output file called, say, \.{foo.tex}. The latter file, when processed by \TeX, will yield a ``prettyprinted'' representation of the input file. @^user manual@> Line breaks in the input are carried over into the output; moreover, blank spaces at the beginning of a line are converted to quads of indentation in the output. Thus, the user has full control over the indentation and line breaks. Each line of input is translated independently of the others. A slight change to \MF's comment convention allows further control. Namely, `\.{\%\%}' indicates that the remainder of an input line should be copied verbatim to the output; this interrupts the translation and forces \.{MFT} to produce a certain result. Furthermore, `\.{\%\%\%} $\langle\,$token$_1\,\rangle\ldots \langle\,$token$_n\,\rangle$' introduces a change in \.{MFT}'s formatting rules; all tokens after the first will henceforth be translated according to the current conventions for $\langle\,$token$_1\,\rangle$. The tokens must be symbolic (i.e., not numeric or string tokens). For example, the input line $$\.{\%\%\% addto fill draw filldraw}$$ says that the `\.{fill}', `\.{draw}', and `\.{filldraw}' operations of plain \MF\ should be formatted as the primitive token `\.{addto}', i.e., in boldface type. (Without such reformatting commands, \.{MFT} would treat `\.{fill}' like an ordinary tag or variable name. In fact, you need a reformatting command even to get parentheses to act like delimiters!) \MF\ comments, which follow a single \.\% sign, should be valid \TeX\ input. But \MF\ material can be included in \pb\ within a comment; this will be translated by \.{MFT} as if it were not in a comment. For example, a phrase like `\.{make} \.{\v x2r\v} \.{zero}' will be translated into `\.{make \$x\_\{2r\}\$ zero}'. The rules just stated apply to lines that contain one, two, or three \.\% signs in a row. Comments to \.{MFT} can follow `\.{\%\%\%\%}'. Five or more \.\% signs should not be used. Beside the normal input file, \.{MFT} also looks for a change file (e.g., `\.{foo.ch}'), which allows substitutions to be made in the translation. The change file follows the conventions of \.{WEB}, and it should be null if there are no changes. (Changes usually contain verbatim instructions to compensate for the fact that \.{MFT} cannot format everything in an optimum way.) There's also a third input file (e.g., `\.{plain.mft}'), which is input before the other two. This file normally contains the `\.{\%\%\%}' formatting commands that are necessary to tune \.{MFT} to a particular style of \MF\ code, so it is called the style file. The output of \.{MFT} should be accompanied by the macros in a small package called \.{mftmac.tex}. @.mftmac@> Caveat: This program is not as ``bulletproof'' as the other routines produced by Stanford's \TeX\ project. It takes care of a great deal of tedious formatting, but it can produce strange output, because \MF\ is an extremely general language. Users should proofread their output carefully. @ \.{MFT} uses a few features of the local \PASCAL\ compiler that may need to be changed in other installations: \yskip\item{1)} Case statements have a default. \item{2)} Input-output routines may need to be adapted for use with a particular character set and/or for printing messages on the user's terminal. \yskip\noindent These features are also present in the \PASCAL\ version of \TeX, where they are used in a similar (but more complex) way. System-dependent portions of \.{MFT} can be identified by looking at the entries for `system dependencies' in the index below. @!@^system dependencies@> The ``banner line'' defined here should be changed whenever \.{MFT} is modified. @d banner=='This is MFT, Version 2.1' @ The program begins with a fairly normal header, made up of pieces that @^system dependencies@> will mostly be filled in later. The \.{MF} input comes from files |mf_file|, |change_file|, and |style_file|; the \TeX\ output goes to file |tex_file|. If it is necessary to abort the job because of a fatal error, the program calls the `|jump_out|' procedure, which goes to the label |end_of_MFT|. @d end_of_MFT = 9999 {go here to wrap it up} @p @t\4@>@@/ program MFT(@!mf_file,@!change_file,@!style_file,@!tex_file); label end_of_MFT; {go here to finish} const @@/ type @@/ var @@/ @@/ procedure initialize; var @@/ begin @@/ end; @ The \PASCAL\ compiler used to develop this system has ``compiler directives'' that can appear in comments whose first character is a dollar sign. In our case these directives tell the compiler to detect @^system dependencies@> things that are out of range. @= @{@&$C+,A+,D-@} {range check, catch arithmetic overflow, no debug overhead} @ Labels are given symbolic names by the following definitions. We insert the label `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in which we have used the `|return|' statement defined below; the label `|restart|' is occasionally used at the very beginning of a procedure; and the label `|reswitch|' is occasionally used just prior to a \&{case} statement in which some cases change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the \&{loop} construction defined below are commonly exited by going to `|done|' or to `|found|' or to `|not_found|', and they are sometimes repeated by going to `|continue|'. @d exit=10 {go here to leave a procedure} @d restart=20 {go here to start a procedure again} @d reswitch=21 {go here to start a case statement again} @d continue=22 {go here to resume a loop} @d done=30 {go here to exit a loop} @d found=31 {go here when you've found it} @d not_found=32 {go here when you've found something else} @ Here are some macros for common programming idioms. @d incr(#) == #:=#+1 {increase a variable by unity} @d decr(#) == #:=#-1 {decrease a variable by unity} @d loop == @+ while true do@+ {repeat over and over until a |goto| happens} @d do_nothing == {empty statement} @d return == goto exit {terminate a procedure call} @f return == nil @f loop == xclause @ We assume that |case| statements may include a default case that applies if no matching label is found. Thus, we shall use constructions like @^system dependencies@> $$\vbox{\halign{#\hfil\cr |case x of|\cr 1: $\langle\,$code for $x=1\,\rangle$;\cr 3: $\langle\,$code for $x=3\,\rangle$;\cr |othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr |endcases|\cr}}$$ since most \PASCAL\ compilers have plugged this hole in the language by incorporating some sort of default mechanism. For example, the compiler used to develop \.{WEB} and \TeX\ allows `|others|:' as a default label, and other \PASCAL s allow syntaxes like `\ignorespaces|else|\unskip' or `\&{otherwise}' or `\\{otherwise}:', etc. The definitions of |othercases| and |endcases| should be changed to agree with local conventions. (Of course, if no default mechanism is available, the |case| statements of this program must be extended by listing all remaining cases.) @d othercases == others: {default for cases not listed explicitly} @d endcases == @+end {follows the default case in an extended |case| statement} @f othercases == else @f endcases == end @ The following parameters are set big enough to handle the Computer Modern fonts, so they should be sufficient for most applications of \.{MFT}. @= @!max_bytes=10000; {the number of bytes in tokens; must be less than 65536} @!max_names=1000; {number of tokens} @!hash_size=353; {should be prime} @!buf_size=100; {maximum length of input line} @!line_length=80; {lines of \TeX\ output have at most this many characters, should be less than 256} @ A global variable called |history| will contain one of four values at the end of every run: |spotless| means that no unusual messages were printed; |harmless_message| means that a message of possible interest was printed but no serious errors were detected; |error_message| means that at least one error was found; |fatal_message| means that the program terminated abnormally. The value of |history| does not influence the behavior of the program; it is simply computed for the convenience of systems that might want to use such information. @d spotless=0 {|history| value for normal jobs} @d harmless_message=1 {|history| value when non-serious info was printed} @d error_message=2 {|history| value when an error was noted} @d fatal_message=3 {|history| value when we had to stop prematurely} @# @d mark_harmless==@t@>@+if history=spotless then history:=harmless_message @d mark_error==history:=error_message @d mark_fatal==history:=fatal_message @=@!history:spotless..fatal_message; {how bad was this run?} @ @=history:=spotless; @* The character set. \.{MFT} works internally with ASCII codes, like all other programs associated with \TeX\ and \MF. The present section has been lifted almost verbatim from the \MF\ program. @^ASCII code@> @ Characters of text that have been converted to \MF's internal form are said to be of type |ASCII_code|, which is a subrange of the integers. @= @!ASCII_code=0..255; {eight-bit numbers} @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit character sets were common, so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and small letters in a convenient way, especially in a program for font design; so the present specification of \.{MFT} has been written under the assumption that the \PASCAL\ compiler and run-time system permit the use of text files with more than 64 distinguishable characters. More precisely, we assume that the character set contains at least the letters and symbols associated with ASCII codes @'40 through @'176. If additional characters are present, \.{MFT} can be configured to work with them too. Since we are dealing with more characters than were present in the first \PASCAL\ compilers, we have to decide what to call the associated data type. Some \PASCAL s use the original name |char| for the characters in text files, even though there now are more than 64 such characters, while other \PASCAL s consider |char| to be a 64-element subrange of a larger data type that has some other name. In order to accommodate this difference, we shall use the name |text_char| to stand for the data type of the characters that are converted to and from |ASCII_code| when they are input and output. We shall also assume that |text_char| consists of the elements |chr(first_text_char)| through |chr(last_text_char)|, inclusive. The following definitions should be adjusted if necessary. @^system dependencies@> @d text_char == char {the data type of characters in text files} @d first_text_char=0 {ordinal number of the smallest element of |text_char|} @d last_text_char=255 {ordinal number of the largest element of |text_char|} @= @!text_file=packed file of text_char; @ @= @!i:0..255; @ The \.{MFT} processor converts between ASCII code and the user's external character set by means of arrays |xord| and |xchr| that are analogous to \PASCAL's |ord| and |chr| functions. @= @!xord: array [text_char] of ASCII_code; {specifies conversion of input characters} @!xchr: array [ASCII_code] of text_char; {specifies conversion of output characters} @ Since we are assuming that our \PASCAL\ system is able to read and write the visible characters of standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment statements initialize most of the |xchr| array properly, without needing any system-dependent changes. On the other hand, it is possible to implement \.{MFT} with less complete character sets, and in such cases it will be necessary to change something here. @^system dependencies@> @= xchr[@'40]:=' '; xchr[@'41]:='!'; xchr[@'42]:='"'; xchr[@'43]:='#'; xchr[@'44]:='$'; xchr[@'45]:='%'; xchr[@'46]:='&'; xchr[@'47]:='''';@/ xchr[@'50]:='('; xchr[@'51]:=')'; xchr[@'52]:='*'; xchr[@'53]:='+'; xchr[@'54]:=','; xchr[@'55]:='-'; xchr[@'56]:='.'; xchr[@'57]:='/';@/ xchr[@'60]:='0'; xchr[@'61]:='1'; xchr[@'62]:='2'; xchr[@'63]:='3'; xchr[@'64]:='4'; xchr[@'65]:='5'; xchr[@'66]:='6'; xchr[@'67]:='7';@/ xchr[@'70]:='8'; xchr[@'71]:='9'; xchr[@'72]:=':'; xchr[@'73]:=';'; xchr[@'74]:='<'; xchr[@'75]:='='; xchr[@'76]:='>'; xchr[@'77]:='?';@/ xchr[@'100]:='@@'; xchr[@'101]:='A'; xchr[@'102]:='B'; xchr[@'103]:='C'; xchr[@'104]:='D'; xchr[@'105]:='E'; xchr[@'106]:='F'; xchr[@'107]:='G';@/ xchr[@'110]:='H'; xchr[@'111]:='I'; xchr[@'112]:='J'; xchr[@'113]:='K'; xchr[@'114]:='L'; xchr[@'115]:='M'; xchr[@'116]:='N'; xchr[@'117]:='O';@/ xchr[@'120]:='P'; xchr[@'121]:='Q'; xchr[@'122]:='R'; xchr[@'123]:='S'; xchr[@'124]:='T'; xchr[@'125]:='U'; xchr[@'126]:='V'; xchr[@'127]:='W';@/ xchr[@'130]:='X'; xchr[@'131]:='Y'; xchr[@'132]:='Z'; xchr[@'133]:='['; xchr[@'134]:='\'; xchr[@'135]:=']'; xchr[@'136]:='^'; xchr[@'137]:='_';@/ xchr[@'140]:='`'; xchr[@'141]:='a'; xchr[@'142]:='b'; xchr[@'143]:='c'; xchr[@'144]:='d'; xchr[@'145]:='e'; xchr[@'146]:='f'; xchr[@'147]:='g';@/ xchr[@'150]:='h'; xchr[@'151]:='i'; xchr[@'152]:='j'; xchr[@'153]:='k'; xchr[@'154]:='l'; xchr[@'155]:='m'; xchr[@'156]:='n'; xchr[@'157]:='o';@/ xchr[@'160]:='p'; xchr[@'161]:='q'; xchr[@'162]:='r'; xchr[@'163]:='s'; xchr[@'164]:='t'; xchr[@'165]:='u'; xchr[@'166]:='v'; xchr[@'167]:='w';@/ xchr[@'170]:='x'; xchr[@'171]:='y'; xchr[@'172]:='z'; xchr[@'173]:='{'; xchr[@'174]:='|'; xchr[@'175]:='}'; xchr[@'176]:='~'; @ The ASCII code is ``standard'' only to a certain extent, since many computer installations have found it advantageous to have ready access to more than 94 printing characters. If \.{MFT} is being used on a garden-variety \PASCAL\ for which only standard ASCII codes will appear in the input and output files, it doesn't really matter what codes are specified in |xchr[0..@'37]|, but the safest policy is to blank everything out by using the code shown below. However, other settings of |xchr| will make \.{MFT} more friendly on computers that have an extended character set, so that users can type things like `\.^^Z' instead of `\.{<>}', and so that \.{MFT} can echo the page breaks found in its input. People with extended character sets can assign codes arbitrarily, giving an |xchr| equivalent to whatever characters the users of \.{MFT} are allowed to have in their input files. Appropriate changes to \.{MFT}'s |char_class| table should then be made. (Unlike \TeX, each installation of \MF\ has a fixed assignment of category codes, called the |char_class|.) Such changes make portability of programs more difficult, so they should be introduced cautiously if at all. @^character set dependencies@> @^system dependencies@> @= for i:=0 to @'37 do xchr[i]:=' '; for i:=@'177 to @'377 do xchr[i]:=' '; @ The following system-independent code makes the |xord| array contain a suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]| where |i= for i:=first_text_char to last_text_char do xord[chr(i)]:=@'177; for i:=@'200 to @'377 do xord[xchr[i]]:=i; for i:=1 to @'176 do xord[xchr[i]]:=i; @* Input and output. The I/O conventions of this program are essentially identical to those of \.{WEAVE}. Therefore people who need to make modifications should be able to do so without too many headaches. @ Terminal output is done by writing on file |term_out|, which is assumed to consist of characters of type |text_char|: @^system dependencies@> @d print(#)==write(term_out,#) {`|print|' means write on the terminal} @d print_ln(#)==write_ln(term_out,#) {`|print|' and then start new line} @d new_line==write_ln(term_out) {start new line on the terminal} @d print_nl(#)== {print information starting on a new line} begin new_line; print(#); end @= @!term_out:text_file; {the terminal as an output file} @ Different systems have different ways of specifying that the output on a certain file will appear on the user's terminal. Here is one way to do this on the \PASCAL\ system that was used in \.{WEAVE}'s initial development: @^system dependencies@> @= rewrite(term_out,'TTY:'); {send |term_out| output to the terminal} @ The |update_terminal| procedure is called when we want to make sure that everything we have output to the terminal so far has actually left the computer's internal buffers and been sent. @^system dependencies@> @d update_terminal == break(term_out) {empty the terminal output buffer} @ The main input comes from |mf_file|; this input may be overridden by changes in |change_file|. (If |change_file| is empty, there are no changes.) Furthermore the |style_file| is input first; it is unchangeable. @= @!mf_file:text_file; {primary input} @!change_file:text_file; {updates} @!style_file:text_file; {formatting bootstrap} @ The following code opens the input files. Since these files were listed in the program header, we assume that the \PASCAL\ runtime system has already checked that suitable file names have been given; therefore no additional error checking needs to be done. @^system dependencies@> @p procedure open_input; {prepare to read the inputs} begin reset(mf_file); reset(change_file); reset(style_file); end; @ The main output goes to |tex_file|. @= @!tex_file: text_file; @ The following code opens |tex_file|. Since this file was listed in the program header, we assume that the \PASCAL\ runtime system has checked that a suitable external file name has been given. @^system dependencies@> @= rewrite(tex_file); @ Input goes into an array called |buffer|. @=@!buffer: array[0..buf_size] of ASCII_code; @ The |input_ln| procedure brings the next line of input from the specified file into the |buffer| array and returns the value |true|, unless the file has already been entirely read, in which case it returns |false|. The conventions of \TeX\ are followed; i.e., |ASCII_code| numbers representing the next line of the file are input into |buffer[0]|, |buffer[1]|, \dots, |buffer[limit-1]|; trailing blanks are ignored; and the global variable |limit| is set to the length of the @^system dependencies@> line. The value of |limit| must be strictly less than |buf_size|. @p function input_ln(var f:text_file):boolean; {inputs a line or returns |false|} var final_limit:0..buf_size; {|limit| without trailing blanks} begin limit:=0; final_limit:=0; if eof(f) then input_ln:=false else begin while not eoln(f) do begin buffer[limit]:=xord[f^]; get(f); incr(limit); if buffer[limit-1]<>" " then final_limit:=limit; if limit=buf_size then begin while not eoln(f) do get(f); decr(limit); {keep |buffer[buf_size]| empty} if final_limit>limit then final_limit:=limit; print_nl('! Input line too long'); loc:=0; error; @.Input line too long@> end; end; read_ln(f); limit:=final_limit; input_ln:=true; end; end; @* Reporting errors to the user. The command `|err_print('! Error message')|' will report a syntax error to the user, by printing the error message at the beginning of a new line and then giving an indication of where the error was spotted in the source file. Note that no period follows the error message, since the error routine will automatically supply a period. The actual error indications are provided by a procedure called |error|. @d err_print(#)== begin new_line; print(#); error; end @= procedure error; {prints `\..' and location of error message} var@!k,@!l: 0..buf_size; {indices into |buffer|} begin @; update_terminal; mark_error; end; @ The error locations can be indicated by using the global variables |loc|, |line|, |styling|, and |changing|, which tell respectively the first unlooked-at position in |buffer|, the current line number, and whether or not the current line is from |style_file| or |change_file| or |mf_file|. This routine should be modified on systems whose standard text editor has special line-numbering conventions. @^system dependencies@> @= begin if styling then print('. (style file ') else if changing then print('. (change file ')@+else print('. ('); print_ln('l.', line:1, ')'); if loc>=limit then l:=limit else l:=loc; for k:=1 to l do print(xchr[buffer[k-1]]); {print the characters already read} new_line; for k:=1 to l do print(' '); {space out the next line} for k:=l+1 to limit do print(xchr[buffer[k-1]]); {print the part not yet read} end @ The |jump_out| procedure just cuts across all active procedure levels and jumps out of the program. This is the only non-local \&{goto} statement in \.{MFT}. It is used when no recovery from a particular error has been provided. Some \PASCAL\ compilers do not implement non-local |goto| statements. @^system dependencies@> In such cases the code that appears at label |end_of_MFT| should be copied into the |jump_out| procedure, followed by a call to a system procedure that terminates the program. @d fatal_error(#)==begin new_line; print(#); error; mark_fatal; jump_out; end @= procedure jump_out; begin goto end_of_MFT; end; @ Sometimes the program's behavior is far different from what it should be, and \.{MFT} prints an error message that is really for the \.{MFT} maintenance person, not the user. In such cases the program says |confusion('indication of where we are')|. @d confusion(#)==fatal_error('! This can''t happen (',#,')') @.This can't happen@> @ An overflow stop occurs if \.{MFT}'s tables aren't large enough. @d overflow(#)==fatal_error('! Sorry, ',#,' capacity exceeded') @.Sorry, x capacity exceeded@> @* Inserting the changes. Let's turn now to the low-level routine |get_line| that takes care of merging |change_file| into |mf_file|. The |get_line| procedure also updates the line numbers for error messages. (This routine was copied from \.{WEAVE}, but updated to include |styling|.) @= @!line:integer; {the number of the current line in the current file} @!other_line:integer; {the number of the current line in the input file that is not currently being read} @!temp_line:integer; {used when interchanging |line| with |other_line|} @!limit:0..buf_size; {the last character position occupied in the buffer} @!loc:0..buf_size; {the next character position to be read from the buffer} @!input_has_ended: boolean; {if |true|, there is no more input} @!changing: boolean; {if |true|, the current line is from |change_file|} @!styling: boolean; {if |true|, the current line is from |style_file|} @ As we change |changing| from |true| to |false| and back again, we must remember to swap the values of |line| and |other_line| so that the |err_print| routine will be sure to report the correct line number. @d change_changing== changing := not changing; temp_line:=other_line; other_line:=line; line:=temp_line {|line @t$\null\BA\null$@> other_line|} @ When |changing| is |false|, the next line of |change_file| is kept in |change_buffer[0..change_limit]|, for purposes of comparison with the next line of |mf_file|. After the change file has been completely input, we set |change_limit:=0|, so that no further matches will be made. @= @!change_buffer:array[0..buf_size] of ASCII_code; @!change_limit:0..buf_size; {the last position occupied in |change_buffer|} @ Here's a simple function that checks if the two buffers are different. @p function lines_dont_match:boolean; label exit; var k:0..buf_size; {index into the buffers} begin lines_dont_match:=true; if change_limit<>limit then return; if limit>0 then for k:=0 to limit-1 do if change_buffer[k]<>buffer[k] then return; lines_dont_match:=false; exit: end; @ Procedure |prime_the_change_buffer| sets |change_buffer| in preparation for the next matching operation. Since blank lines in the change file are not used for matching, we have |(change_limit=0)and not changing| if and only if the change file is exhausted. This procedure is called only when |changing| is true; hence error messages will be reported correctly. @p procedure prime_the_change_buffer; label continue, done, exit; var k:0..buf_size; {index into the buffers} begin change_limit:=0; {this value will be used if the change file ends} @; @; @; exit: end; @ While looking for a line that begins with \.{@@x} in the change file, we allow lines that begin with \.{@@}, as long as they don't begin with \.{@@y} or \.{@@z} (which would probably indicate that the change file is fouled up). @= loop@+ begin incr(line); if not input_ln(change_file) then return; if limit<2 then goto continue; if buffer[0]<>"@@" then goto continue; if (buffer[1]>="X")and(buffer[1]<="Z") then buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify} if buffer[1]="x" then goto done; if (buffer[1]="y")or(buffer[1]="z") then begin loc:=2; err_print('! Where is the matching @@x?'); @.Where is the match...@> end; continue: end; done: @ Here we are looking at lines following the \.{@@x}. @= repeat incr(line); if not input_ln(change_file) then begin err_print('! Change file ended after @@x'); @.Change file ended...@> return; end; until limit>0; @ @= begin change_limit:=limit; if limit>0 then for k:=0 to limit-1 do change_buffer[k]:=buffer[k]; end @ The following procedure is used to see if the next change entry should go into effect; it is called only when |changing| is false. The idea is to test whether or not the current contents of |buffer| matches the current contents of |change_buffer|. If not, there's nothing more to do; but if so, a change is called for: All of the text down to the \.{@@y} is supposed to match. An error message is issued if any discrepancy is found. Then the procedure prepares to read the next line from |change_file|. @p procedure check_change; {switches to |change_file| if the buffers match} label exit; var n:integer; {the number of discrepancies found} @!k:0..buf_size; {index into the buffers} begin if lines_dont_match then return; n:=0; loop@+ begin change_changing; {now it's |true|} incr(line); if not input_ln(change_file) then begin err_print('! Change file ended before @@y'); @.Change file ended...@> change_limit:=0; change_changing; {|false| again} return; end; @; @; change_changing; {now it's |false|} incr(line); if not input_ln(mf_file) then begin err_print('! MF file ended during a change'); @.MF file ended...@> input_has_ended:=true; return; end; if lines_dont_match then incr(n); end; exit: end; @ @= if limit>1 then if buffer[0]="@@" then begin if (buffer[1]>="X")and(buffer[1]<="Z") then buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify} if (buffer[1]="x")or(buffer[1]="z") then begin loc:=2; err_print('! Where is the matching @@y?'); @.Where is the match...@> end else if buffer[1]="y" then begin if n>0 then begin loc:=2; err_print('! Hmm... ',n:1, ' of the preceding lines failed to match'); @.Hmm... n of the preceding...@> end; return; end; end @ Here's what we do to get the input rolling. @= begin open_input; line:=0; other_line:=0;@/ changing:=true; prime_the_change_buffer; change_changing;@/ styling:=true; limit:=0; loc:=1; buffer[0]:=" "; input_has_ended:=false; end @ The |get_line| procedure is called when |loc>limit|; it puts the next line of merged input into the buffer and updates the other variables appropriately. @p procedure get_line; {inputs the next line} label restart; begin restart: if styling then @; if not styling then begin if changing then @; if not changing then begin @; if changing then goto restart; end; end; end; @ @= begin incr(line); if not input_ln(mf_file) then input_has_ended:=true else if change_limit>0 then check_change; end @ @= begin incr(line); if not input_ln(style_file) then begin styling:=false; line:=0; end; end @ @= begin incr(line); if not input_ln(change_file) then begin err_print('! Change file ended without @@z'); @.Change file ended...@> buffer[0]:="@@"; buffer[1]:="z"; limit:=2; end; if limit>1 then {check if the change has ended} if buffer[0]="@@" then begin if (buffer[1]>="X")and(buffer[1]<="Z") then buffer[1]:=buffer[1]+"z"-"Z"; {lowercasify} if (buffer[1]="x")or(buffer[1]="y") then begin loc:=2; err_print('! Where is the matching @@z?'); @.Where is the match...@> end else if buffer[1]="z" then begin prime_the_change_buffer; change_changing; end; end; end @ At the end of the program, we will tell the user if the change file had a line that didn't match any relevant line in |mf_file|. @= if change_limit<>0 then {|changing| is false} begin for loc:=0 to change_limit-1 do buffer[loc]:=change_buffer[loc]; limit:=change_limit; changing:=true; line:=other_line; loc:=change_limit; err_print('! Change file entry did not match'); @.Change file entry did not match@> end @* Data structures. \.{MFT} puts token names into the large |byte_mem| array, which is packed with eight-bit integers. Allocation is sequential, since names are never deleted. An auxiliary array |byte_start| is used as a directory for |byte_mem|; the |link| and |ilk| arrays give further information about names. These auxiliary arrays consist of sixteen-bit items. @= @!eight_bits=0..255; {unsigned one-byte quantity} @!sixteen_bits=0..65535; {unsigned two-byte quantity} @ \.{MFT} has been designed to avoid the need for indices that are more than sixteen bits wide, so that it can be used on most computers. @= @!byte_mem: packed array [0..max_bytes] of ASCII_code; {characters of names} @!byte_start: array [0..max_names] of sixteen_bits; {directory into |byte_mem|} @!link: array [0..max_names] of sixteen_bits; {hash table links} @!ilk: array [0..max_names] of sixteen_bits; {type codes} @ The names of tokens are found by computing a hash address |h| and then looking at strings of bytes signified by |hash[h]|, |link[hash[h]]|, |link[link[hash[h]]]|, \dots, until either finding the desired name or encountering a zero. A `|name_pointer|' variable, which signifies a name, is an index into |byte_start|. The actual sequence of characters in the name pointed to by |p| appears in positions |byte_start[p]| to |byte_start[p+1]-1|, inclusive, of |byte_mem|. We usually have |byte_start[name_ptr]=byte_ptr|, which is the starting position for the next name to be stored in |byte_mem|. @d length(#)==byte_start[#+1]-byte_start[#] {the length of a name} @= @!name_pointer=0..max_names; {identifies a name} @ @= @!name_ptr:name_pointer; {first unused position in |byte_start|} @!byte_ptr:0..max_bytes; {first unused position in |byte_mem|} @ @= byte_start[0]:=0; byte_ptr:=0; byte_start[1]:=0; {this makes name 0 of length zero} name_ptr:=1; @ The hash table described above is updated by the |lookup| procedure, which finds a given name and returns a pointer to its index in |byte_start|. The token is supposed to match character by character. If it was not already present, it is inserted into the table. Because of the way \.{MFT}'s scanning mechanism works, it is most convenient to let |lookup| search for a token that is present in the |buffer| array. Two other global variables specify its position in the buffer: the first character is |buffer[id_first]|, and the last is |buffer[id_loc-1]|. @= @!id_first:0..buf_size; {where the current token begins in the buffer} @!id_loc:0..buf_size; {just after the current token in the buffer} @# @!hash:array [0..hash_size] of sixteen_bits; {heads of hash lists} @ Initially all the hash lists are empty. @= @!h:0..hash_size; {index into hash-head array} @ @= for h:=0 to hash_size-1 do hash[h]:=0; @ Here now is the main procedure for finding tokens. @p function lookup:name_pointer; {finds current token} label found; var i:0..buf_size; {index into |buffer|} @!h:0..hash_size; {hash code} @!k:0..max_bytes; {index into |byte_mem|} @!l:0..buf_size; {length of the given token} @!p:name_pointer; {where the token is being sought} begin l:=id_loc-id_first; {compute the length} @; @; if p=name_ptr then @; lookup:=p; end; @ A simple hash code is used: If the sequence of ASCII codes is $c_1c_2\ldots c_n$, its hash value will be $$(2^{n-1}c_1+2^{n-2}c_2+\cdots+c_n)\,\bmod\,|hash_size|.$$ @= h:=buffer[id_first]; i:=id_first+1; while i= p:=hash[h]; while p<>0 do begin if length(p)=l then @; p:=link[p]; end; p:=name_ptr; {the current token is new} link[p]:=hash[h]; hash[h]:=p; {insert |p| at beginning of hash list} found: @ @= begin i:=id_first; k:=byte_start[p]; while (i= begin if byte_ptr+l>max_bytes then overflow('byte memory'); if name_ptr+1>max_names then overflow('name'); i:=id_first; {get ready to move the token into |byte_mem|} while i; end @* Initializing the primitive tokens. Each token read by \.{MFT} is recognized as belonging to one of the following ``types'': @d indentation=0 {internal code for space at beginning of a line} @d end_of_line=1 {internal code for hypothetical token at end of a line} @d end_of_file=2 {internal code for hypothetical token at end of the input} @d verbatim=3 {internal code for the token `\.{\%\%}'} @d set_format=4 {internal code for the token `\.{\%\%\%}'} @d mft_comment=5 {internal code for the token `\.{\%\%\%\%}'} @d min_action_type=6 {smallest code for tokens that produce ``real'' output} @d numeric_token=6 {internal code for tokens like `\.{3.14159}'} @d string_token=7 {internal code for tokens like `|"pie"|'} @d min_symbolic_token=8 {smallest internal code for a symbolic token} @d op=8 {internal code for tokens like `\.{sqrt}'} @d command=9 {internal code for tokens like `\.{addto}'} @d endit=10 {internal code for tokens like `\.{fi}'} @d binary=11 {internal code for tokens like `\.{and}'} @d abinary=12 {internal code for tokens like `\.{+}'} @d bbinary=13 {internal code for tokens like `\.{step}'} @d ampersand=14 {internal code for the token `\.{\char`\&}'} @d pyth_sub=15 {internal code for the token `\.{+-+}'} @d as_is=16 {internal code for tokens like `\.{]}'} @d bold=17 {internal code for tokens like `\.{nullpen}'} @d type_name=18 {internal code for tokens like `\.{numeric}'} @d path_join=19 {internal code for the token `\.{..}'} @d colon=20 {internal code for the token `\.:'} @d semicolon=21 {internal code for the token `\.;'} @d backslash=22 {internal code for the token `\.{\\}'} @d double_back=23 {internal code for the token `\.{\\\\}'} @d less_or_equal=24 {internal code for the token `\.{<=}'} @d greater_or_equal=25 {internal code for the token `\.{>=}'} @d not_equal=26 {internal code for the token `\.{<>}'} @d sharp=27 {internal code for the token `\.{\char`\#}'} @d comment=28 {internal code for the token `\.{\char`\%}'} @d recomment=29 {internal code used to resume a comment after `\pb'} @d min_suffix=30 {smallest code for symbolic tokens in suffixes} @d internal=30 {internal code for tokens like `\.{pausing}'} @d input_command=31 {internal code for tokens like `\.{input}'} @d special_tag=32 {internal code for tags that take at most one subscript} @d tag=33 {internal code for nonprimitive tokens} @=ilk[p]:=tag @ We have to get \MF's primitives into the hash table, and the simplest way to do this is to insert them every time \.{MFT} is run. A few macros permit us to do the initialization with a compact program. We use the fact that the longest primitive is \.{intersectiontimes}, which is 17 letters long. @d spr17(#)==buffer[17]:=#;cur_tok:=lookup;ilk[cur_tok]:= @d spr16(#)==buffer[16]:=#;spr17 @d spr15(#)==buffer[15]:=#;spr16 @d spr14(#)==buffer[14]:=#;spr15 @d spr13(#)==buffer[13]:=#;spr14 @d spr12(#)==buffer[12]:=#;spr13 @d spr11(#)==buffer[11]:=#;spr12 @d spr10(#)==buffer[10]:=#;spr11 @d spr9(#)==buffer[9]:=#;spr10 @d spr8(#)==buffer[8]:=#;spr9 @d spr7(#)==buffer[7]:=#;spr8 @d spr6(#)==buffer[6]:=#;spr7 @d spr5(#)==buffer[5]:=#;spr6 @d spr4(#)==buffer[4]:=#;spr5 @d spr3(#)==buffer[3]:=#;spr4 @d spr2(#)==buffer[2]:=#;spr3 @d spr1(#)==buffer[1]:=#;spr2 @d pr1==id_first:=17; spr17 @d pr2==id_first:=16; spr16 @d pr3==id_first:=15; spr15 @d pr4==id_first:=14; spr14 @d pr5==id_first:=13; spr13 @d pr6==id_first:=12; spr12 @d pr7==id_first:=11; spr11 @d pr8==id_first:=10; spr10 @d pr9==id_first:=9; spr9 @d pr10==id_first:=8; spr8 @d pr11==id_first:=7; spr7 @d pr12==id_first:=6; spr6 @d pr13==id_first:=5; spr5 @d pr14==id_first:=4; spr4 @d pr15==id_first:=3; spr3 @d pr16==id_first:=2; spr2 @d pr17==id_first:=1; spr1 @ The intended use of the macros above might not be immediately obvious, but the riddle is answered by the following: @= id_loc:=18;@/ pr2(".")(".")(path_join);@/ pr1("[")(as_is);@/ pr1("]")(as_is);@/ pr1("}")(as_is);@/ pr1("{")(as_is);@/ pr1(":")(colon);@/ pr2(":")(":")(colon);@/ pr3("|")("|")(":")(colon);@/ pr2(":")("=")(as_is);@/ pr1(",")(as_is);@/ pr1(";")(semicolon);@/ pr1("\")(backslash);@/ pr2("\")("\")(double_back);@/ pr5("a")("d")("d")("t")("o")(command);@/ pr2("a")("t")(bbinary);@/ pr7("a")("t")("l")("e")("a")("s")("t")(op);@/ pr10("b")("e")("g")("i")("n")("g")("r")("o")("u")("p")(command); pr8("c")("o")("n")("t")("r")("o")("l")("s")(op);@/ pr4("c")("u")("l")("l")(command);@/ pr4("c")("u")("r")("l")(op);@/ pr10("d")("e")("l")("i")("m")("i")("t")("e")("r")("s")(command);@/ pr7("d")("i")("s")("p")("l")("a")("y")(command);@/ pr8("e")("n")("d")("g")("r")("o")("u")("p")(endit);@/ pr8("e")("v")("e")("r")("y")("j")("o")("b")(command);@/ pr6("e")("x")("i")("t")("i")("f")(command);@/ pr11("e")("x")("p")("a")("n")("d")("a")("f")("t")("e")("r")(command);@/ pr4("f")("r")("o")("m")(bbinary);@/ pr8("i")("n")("w")("i")("n")("d")("o")("w")(bbinary);@/ pr7("i")("n")("t")("e")("r")("i")("m")(command);@/ pr3("l")("e")("t")(command);@/ pr11("n")("e")("w")("i")("n")("t")("e")("r")("n")("a")("l")(command);@/ pr2("o")("f")(command);@/ pr10("o")("p")("e")("n")("w")("i")("n")("d")("o")("w")(command);@/ pr10("r")("a")("n")("d")("o")("m")("s")("e")("e")("d")(command);@/ pr4("s")("a")("v")("e")(command);@/ pr10("s")("c")("a")("n")("t")("o")("k")("e")("n")("s")(command);@/ pr7("s")("h")("i")("p")("o")("u")("t")(command);@/ pr4("s")("t")("e")("p")(bbinary);@/ pr3("s")("t")("r")(command);@/ pr7("t")("e")("n")("s")("i")("o")("n")(op);@/ pr2("t")("o")(bbinary);@/ pr5("u")("n")("t")("i")("l")(bbinary);@/ pr3("d")("e")("f")(command);@/ pr6("v")("a")("r")("d")("e")("f")(command);@/ @ (There are so many primitives, it's necessary to break this long initialization code up into pieces so as not to overflow \.{WEAVE}'s capacity.) @= pr10("p")("r")("i")("m")("a")("r")("y")("d")("e")("f")(command);@/ pr12("s")("e")("c")("o")("n")("d")("a")("r")("y")("d")("e")("f")(command);@/ pr11("t")("e")("r")("t")("i")("a")("r")("y")("d")("e")("f")(command);@/ pr6("e")("n")("d")("d")("e")("f")(endit);@/ pr3("f")("o")("r")(command);@/ pr11("f")("o")("r")("s")("u")("f")("f")("i")("x")("e")("s")(command);@/ pr7("f")("o")("r")("e")("v")("e")("r")(command);@/ pr6("e")("n")("d")("f")("o")("r")(endit);@/ pr5("q")("u")("o")("t")("e")(command);@/ pr4("e")("x")("p")("r")(command);@/ pr6("s")("u")("f")("f")("i")("x")(command);@/ pr4("t")("e")("x")("t")(command);@/ pr7("p")("r")("i")("m")("a")("r")("y")(command);@/ pr9("s")("e")("c")("o")("n")("d")("a")("r")("y")(command);@/ pr8("t")("e")("r")("t")("i")("a")("r")("y")(command);@/ pr5("i")("n")("p")("u")("t")(input_command);@/ pr8("e")("n")("d")("i")("n")("p")("u")("t")(bold);@/ pr2("i")("f")(command);@/ pr2("f")("i")(endit);@/ pr4("e")("l")("s")("e")(command);@/ pr6("e")("l")("s")("e")("i")("f")(command);@/ pr4("t")("r")("u")("e")(bold);@/ pr5("f")("a")("l")("s")("e")(bold);@/ pr11("n")("u")("l")("l")("p")("i")("c")("t")("u")("r")("e")(bold);@/ pr7("n")("u")("l")("l")("p")("e")("n")(bold);@/ pr7("j")("o")("b")("n")("a")("m")("e")(bold);@/ pr10("r")("e")("a")("d")("s")("t")("r")("i")("n")("g")(bold);@/ pr9("p")("e")("n")("c")("i")("r")("c")("l")("e")(bold);@/ pr4("g")("o")("o")("d")(special_tag);@/ pr2("=")(":")(as_is);@/ pr3("=")(":")("|")(as_is);@/ pr4("=")(":")("|")(">")(as_is);@/ pr3("|")("=")(":")(as_is);@/ pr4("|")("=")(":")(">")(as_is);@/ pr4("|")("=")(":")("|")(as_is);@/ pr5("|")("=")(":")("|")(">")(as_is);@/ pr6("|")("=")(":")("|")(">")(">")(as_is);@/ pr4("k")("e")("r")("n")(binary); pr6("s")("k")("i")("p")("t")("o")(command);@/ @ (Does anybody out there remember the commercials that went \.{LS-MFT}?) @= pr13("n")("o")("r")("m")("a")("l")("d")("e")("v")("i")("a")("t")("e")(op);@/ pr3("o")("d")("d")(op);@/ pr5("k")("n")("o")("w")("n")(op);@/ pr7("u")("n")("k")("n")("o")("w")("n")(op);@/ pr3("n")("o")("t")(op);@/ pr7("d")("e")("c")("i")("m")("a")("l")(op);@/ pr7("r")("e")("v")("e")("r")("s")("e")(op);@/ pr8("m")("a")("k")("e")("p")("a")("t")("h")(op);@/ pr7("m")("a")("k")("e")("p")("e")("n")(op);@/ pr11("t")("o")("t")("a")("l")("w")("e")("i")("g")("h")("t")(op);@/ pr3("o")("c")("t")(op);@/ pr3("h")("e")("x")(op);@/ pr5("A")("S")("C")("I")("I")(op);@/ pr4("c")("h")("a")("r")(op);@/ pr6("l")("e")("n")("g")("t")("h")(op);@/ pr13("t")("u")("r")("n")("i")("n")("g")("n")("u")("m")("b")("e")("r")(op);@/ pr5("x")("p")("a")("r")("t")(op);@/ pr5("y")("p")("a")("r")("t")(op);@/ pr6("x")("x")("p")("a")("r")("t")(op);@/ pr6("x")("y")("p")("a")("r")("t")(op);@/ pr6("y")("x")("p")("a")("r")("t")(op);@/ pr6("y")("y")("p")("a")("r")("t")(op);@/ pr4("s")("q")("r")("t")(op);@/ pr4("m")("e")("x")("p")(op);@/ pr4("m")("l")("o")("g")(op);@/ pr4("s")("i")("n")("d")(op);@/ pr4("c")("o")("s")("d")(op);@/ pr5("f")("l")("o")("o")("r")(op);@/ pr14("u")("n")("i")("f")("o")("r")("m")("d")("e")("v")("i")("a")("t")("e")(op); @/ pr10("c")("h")("a")("r")("e")("x")("i")("s")("t")("s")(op);@/ pr5("a")("n")("g")("l")("e")(op);@/ pr5("c")("y")("c")("l")("e")(op);@/ @ (If you think this \.{WEB} code is ugly, you should see the Pascal code it produces.) @= pr13("t")("r")("a")("c")("i")("n")("g") ("t")("i")("t")("l")("e")("s")(internal);@/ pr16("t")("r")("a")("c")("i")("n")("g") ("e")("q")("u")("a")("t")("i")("o")("n")("s")(internal);@/ pr15("t")("r")("a")("c")("i")("n")("g") ("c")("a")("p")("s")("u")("l")("e")("s")(internal);@/ pr14("t")("r")("a")("c")("i")("n")("g") ("c")("h")("o")("i")("c")("e")("s")(internal);@/ pr12("t")("r")("a")("c")("i")("n")("g") ("s")("p")("e")("c")("s")(internal);@/ pr11("t")("r")("a")("c")("i")("n")("g") ("p")("e")("n")("s")(internal);@/ pr15("t")("r")("a")("c")("i")("n")("g") ("c")("o")("m")("m")("a")("n")("d")("s")(internal);@/ pr13("t")("r")("a")("c")("i")("n")("g") ("m")("a")("c")("r")("o")("s")(internal);@/ pr12("t")("r")("a")("c")("i")("n")("g") ("e")("d")("g")("e")("s")(internal);@/ pr13("t")("r")("a")("c")("i")("n")("g") ("o")("u")("t")("p")("u")("t")(internal);@/ pr12("t")("r")("a")("c")("i")("n")("g") ("s")("t")("a")("t")("s")(internal);@/ pr13("t")("r")("a")("c")("i")("n")("g") ("o")("n")("l")("i")("n")("e")(internal);@/ pr15("t")("r")("a")("c")("i")("n")("g") ("r")("e")("s")("t")("o")("r")("e")("s")(internal);@/ @ @= pr4("y")("e")("a")("r")(internal);@/ pr5("m")("o")("n")("t")("h")(internal);@/ pr3("d")("a")("y")(internal);@/ pr4("t")("i")("m")("e")(internal);@/ pr8("c")("h")("a")("r")("c")("o")("d")("e")(internal);@/ pr7("c")("h")("a")("r")("e")("x")("t")(internal);@/ pr6("c")("h")("a")("r")("w")("d")(internal);@/ pr6("c")("h")("a")("r")("h")("t")(internal);@/ pr6("c")("h")("a")("r")("d")("p")(internal);@/ pr6("c")("h")("a")("r")("i")("c")(internal);@/ pr6("c")("h")("a")("r")("d")("x")(internal);@/ pr6("c")("h")("a")("r")("d")("y")(internal);@/ pr10("d")("e")("s")("i")("g")("n")("s")("i")("z")("e")(internal);@/ pr4("h")("p")("p")("p")(internal);@/ pr4("v")("p")("p")("p")(internal);@/ pr7("x")("o")("f")("f")("s")("e")("t")(internal);@/ pr7("y")("o")("f")("f")("s")("e")("t")(internal);@/ pr7("p")("a")("u")("s")("i")("n")("g")(internal);@/ pr12("s")("h")("o")("w") ("s")("t")("o")("p")("p")("i")("n")("g")(internal);@/ pr10("f")("o")("n")("t")("m")("a")("k")("i")("n")("g")(internal);@/ pr8("p")("r")("o")("o")("f")("i")("n")("g")(internal);@/ pr9("s")("m")("o")("o")("t")("h")("i")("n")("g")(internal);@/ pr12("a")("u")("t")("o")("r")("o")("u")("n")("d")("i")("n")("g")(internal);@/ pr11("g")("r")("a")("n")("u")("l")("a")("r")("i")("t")("y")(internal);@/ pr6("f")("i")("l")("l")("i")("n")(internal);@/ pr12("t")("u")("r")("n")("i")("n")("g")("c")("h")("e")("c")("k")(internal);@/ pr12("w")("a")("r")("n")("i")("n")("g")("c")("h")("e")("c")("k")(internal);@/ pr12("b")("o")("u")("n")("d")("a")("r")("y")("c")("h")("a")("r")(internal);@/ @ Still more. @= pr1("+")(abinary);@/ pr1("-")(abinary);@/ pr1("*")(abinary);@/ pr1("/")(as_is);@/ pr2("+")("+")(binary);@/ pr3("+")("-")("+")(pyth_sub);@/ pr3("a")("n")("d")(binary);@/ pr2("o")("r")(binary);@/ pr1("<")(as_is);@/ pr2("<")("=")(less_or_equal);@/ pr1(">")(as_is);@/ pr2(">")("=")(greater_or_equal);@/ pr1("=")(as_is);@/ pr2("<")(">")(not_equal);@/ pr9("s")("u")("b")("s")("t")("r")("i")("n")("g")(command);@/ pr7("s")("u")("b")("p")("a")("t")("h")(command);@/ pr13("d")("i")("r")("e")("c")("t")("i")("o")("n")@| ("t")("i")("m")("e")(command);@/ pr5("p")("o")("i")("n")("t")(command);@/ pr10("p")("r")("e")("c")("o")("n")("t")("r")("o")("l")(command);@/ pr11("p")("o")("s")("t")("c")("o")("n")("t")("r")("o")("l")(command);@/ pr9("p")("e")("n")("o")("f")("f")("s")("e")("t")(command);@/ pr1("&")(ampersand);@/ pr7("r")("o")("t")("a")("t")("e")("d")(binary);@/ pr7("s")("l")("a")("n")("t")("e")("d")(binary);@/ pr6("s")("c")("a")("l")("e")("d")(binary);@/ pr7("s")("h")("i")("f")("t")("e")("d")(binary);@/ pr11("t")("r")("a")("n")("s")("f")("o")("r")("m")("e")("d")(binary);@/ pr7("x")("s")("c")("a")("l")("e")("d")(binary);@/ pr7("y")("s")("c")("a")("l")("e")("d")(binary);@/ pr7("z")("s")("c")("a")("l")("e")("d")(binary);@/ pr17("i")("n")("t")("e")("r")("s")("e")("c")("t")("i")("o")("n")@| ("t")("i")("m")("e")("s")(binary);@/ pr7("n")("u")("m")("e")("r")("i")("c")(type_name);@/ pr6("s")("t")("r")("i")("n")("g")(type_name);@/ pr7("b")("o")("o")("l")("e")("a")("n")(type_name);@/ pr4("p")("a")("t")("h")(type_name);@/ pr3("p")("e")("n")(type_name);@/ pr7("p")("i")("c")("t")("u")("r")("e")(type_name);@/ pr9("t")("r")("a")("n")("s")("f")("o")("r")("m")(type_name);@/ pr4("p")("a")("i")("r")(type_name);@/ @ At last we are done with the tedious initialization of primitives. @= pr3("e")("n")("d")(endit);@/ pr4("d")("u")("m")("p")(endit);@/ pr9("b")("a")("t")("c")("h")("m")("o")("d")("e")(bold); pr11("n")("o")("n")("s")("t")("o")("p")("m")("o")("d")("e")(bold); pr10("s")("c")("r")("o")("l")("l")("m")("o")("d")("e")(bold); pr13("e")("r")("r")("o")("r")("s")("t")("o")("p")@| ("m")("o")("d")("e")(bold); pr5("i")("n")("n")("e")("r")(command);@/ pr5("o")("u")("t")("e")("r")(command);@/ pr9("s")("h")("o")("w")("t")("o")("k")("e")("n")(command);@/ pr9("s")("h")("o")("w")("s")("t")("a")("t")("s")(bold);@/ pr4("s")("h")("o")("w")(command);@/ pr12("s")("h")("o")("w")("v")("a")("r")("i")("a")("b")("l")("e")(command);@/ pr16("s")("h")("o")("w")@| ("d")("e")("p")("e")("n")("d")("e")("n")("c")("i")("e")("s")(bold);@/ pr7("c")("o")("n")("t")("o")("u")("r")(command);@/ pr10("d")("o")("u")("b")("l")("e")("p")("a")("t")("h")(command);@/ pr4("a")("l")("s")("o")(command);@/ pr7("w")("i")("t")("h")("p")("e")("n")(command);@/ pr10("w")("i")("t")("h")("w")("e")("i")("g")("h")("t")(command);@/ pr8("d")("r")("o")("p")("p")("i")("n")("g")(command);@/ pr7("k")("e")("e")("p")("i")("n")("g")(command);@/ pr7("m")("e")("s")("s")("a")("g")("e")(command);@/ pr10("e")("r")("r")("m")("e")("s")("s")("a")("g")("e")(command);@/ pr7("e")("r")("r")("h")("e")("l")("p")(command);@/ pr8("c")("h")("a")("r")("l")("i")("s")("t")(command);@/ pr8("l")("i")("g")("t")("a")("b")("l")("e")(command);@/ pr10("e")("x")("t")("e")("n")("s")("i")("b")("l")("e")(command);@/ pr10("h")("e")("a")("d")("e")("r")("b")("y")("t")("e")(command);@/ pr9("f")("o")("n")("t")("d")("i")("m")("e")("n")(command);@/ pr7("s")("p")("e")("c")("i")("a")("l")(command);@/ pr10("n")("u")("m")("s")("p")("e")("c")("i")("a")("l")(command);@/ pr1("%")(comment);@/ pr2("%")("%")(verbatim);@/ pr3("%")("%")("%")(set_format);@/ pr4("%")("%")("%")("%")(mft_comment);@/ pr1("#")(sharp);@/ @ We also want to store a few other strings of characters that are used in \.{MFT}'s translation to \TeX\ code. @d ttr1(#)==byte_mem[byte_ptr-1]:=#; cur_tok:=name_ptr; incr(name_ptr); byte_start[name_ptr]:=byte_ptr @d ttr2(#)==byte_mem[byte_ptr-2]:=#; ttr1 @d ttr3(#)==byte_mem[byte_ptr-3]:=#; ttr2 @d ttr4(#)==byte_mem[byte_ptr-4]:=#; ttr3 @d ttr5(#)==byte_mem[byte_ptr-5]:=#; ttr4 @d tr1==incr(byte_ptr); ttr1 @d tr2==byte_ptr:=byte_ptr+2; ttr2 @d tr3==byte_ptr:=byte_ptr+3; ttr3 @d tr4==byte_ptr:=byte_ptr+4; ttr4 @d tr5==byte_ptr:=byte_ptr+5; ttr5 @= @!translation:array[ASCII_code] of name_pointer; @!i:ASCII_code; {index into |translation|} @ @= for i:=0 to 255 do translation[i]:=0; tr2("\")("$"); translation["$"]:=cur_tok;@/ tr2("\")("#"); translation["#"]:=cur_tok;@/ tr2("\")("&"); translation["&"]:=cur_tok;@/ tr2("\")("{"); translation["{"]:=cur_tok;@/ tr2("\")("}"); translation["}"]:=cur_tok;@/ tr2("\")("_"); translation["_"]:=cur_tok;@/ tr2("\")("%"); translation["%"]:=cur_tok;@/ tr4("\")("B")("S")(" "); translation["\"]:=cur_tok;@/ tr4("\")("H")("A")(" "); translation["^"]:=cur_tok;@/ tr4("\")("T")("I")(" "); translation["~"]:=cur_tok;@/ tr5("\")("a")("s")("t")(" "); translation["*"]:=cur_tok;@/ tr4("\")("A")("M")(" "); tr_amp:=cur_tok;@/ @.\\AM, etc@> tr4("\")("B")("L")(" "); tr_skip:=cur_tok;@/ tr4("\")("S")("H")(" "); tr_sharp:=cur_tok;@/ tr4("\")("P")("S")(" "); tr_ps:=cur_tok;@/ tr4("\")("l")("e")(" "); tr_le:=cur_tok;@/ tr4("\")("g")("e")(" "); tr_ge:=cur_tok;@/ tr4("\")("n")("e")(" "); tr_ne:=cur_tok;@/ tr5("\")("q")("u")("a")("d"); tr_quad:=cur_tok;@/ @ @= @!tr_le,@!tr_ge,@!tr_ne,@!tr_amp,@!tr_sharp,@!tr_skip,@!tr_ps, @!tr_quad:name_pointer; {special translations} @* Inputting the next token. \.{MFT}'s lexical scanning routine is called |get_next|. This procedure inputs the next token of \MF\ input and puts its encoded meaning into two global variables, |cur_type| and |cur_tok|. @= @!cur_type:eight_bits; {type of token just scanned} @!cur_tok:integer; {hash table or buffer location} @!prev_type:eight_bits; {previous value of |cur_type|} @!prev_tok:integer; {previous value of |cur_tok|} @ @= cur_type:=end_of_line; cur_tok:=0; @ Two global state variables affect the behavior of |get_next|: A space will be considered significant when |start_of_line| is |true|, and the buffer will be considered devoid of information when |empty_buffer| is |true|. @= @!start_of_line:boolean; {has the current line had nothing but spaces so far?} @!empty_buffer:boolean; {is it time to input a new line?} @ The 256 |ASCII_code| characters are grouped into classes by means of the |char_class| table. Individual class numbers have no semantic or syntactic significance, expect in a few instances defined here. There's also |max_class|, which can be used as a basis for additional class numbers in nonstandard extensions of \MF. @d digit_class=0 {the class number of \.{0123456789}} @d period_class=1 {the class number of `\..'} @d space_class=2 {the class number of spaces and nonstandard characters} @d percent_class=3 {the class number of `\.\%'} @d string_class=4 {the class number of `\."'} @d right_paren_class=8 {the class number of `\.)'} @d isolated_classes==5,6,7,8 {characters that make length-one tokens only} @d letter_class=9 {letters and the underline character} @d left_bracket_class=17 {`\.['} @d right_bracket_class=18 {`\.]'} @d invalid_class=20 {bad character in the input} @d end_line_class=21 {end of an input line (\.{MFT} only)} @d max_class=21 {the largest class number} @= @!char_class:array[ASCII_code] of 0..max_class; {the class numbers} @ If changes are made to accommodate non-ASCII character sets, they should be essentially the same in \.{MFT} as in \MF. However, \.{MFT} has an additional class number, the |end_line_class|, which is used only for the special character |carriage_return| that is placed at the end of the input buffer. @^character set dependencies@> @^system dependencies@> @d carriage_return=@'15 {special code placed in |buffer[limit]|} @= for i:="0" to "9" do char_class[i]:=digit_class; char_class["."]:=period_class; char_class[" "]:=space_class; char_class["%"]:=percent_class; char_class[""""]:=string_class;@/ char_class[","]:=5; char_class[";"]:=6; char_class["("]:=7; char_class[")"]:=right_paren_class; for i:="A" to "Z" do char_class[i]:=letter_class; for i:="a" to "z" do char_class[i]:=letter_class; char_class["_"]:=letter_class;@/ char_class["<"]:=10; char_class["="]:=10; char_class[">"]:=10; char_class[":"]:=10; char_class["|"]:=10;@/ char_class["`"]:=11; char_class["'"]:=11;@/ char_class["+"]:=12; char_class["-"]:=12;@/ char_class["/"]:=13; char_class["*"]:=13; char_class["\"]:=13;@/ char_class["!"]:=14; char_class["?"]:=14;@/ char_class["#"]:=15; char_class["&"]:=15; char_class["@@"]:=15; char_class["$"]:=15;@/ char_class["^"]:=16; char_class["~"]:=16;@/ char_class["["]:=left_bracket_class; char_class["]"]:=right_bracket_class;@/ char_class["{"]:=19; char_class["}"]:=19;@/ for i:=0 to " "-1 do char_class[i]:=invalid_class; char_class[carriage_return]:=end_line_class;@/ for i:=127 to 255 do char_class[i]:=invalid_class; @ And now we're ready to take the plunge into |get_next| itself. @d switch=25 {a label in |get_next|} @d pass_digits=85 {another} @d pass_fraction=86 {and still another, although |goto| is considered harmful} @p procedure get_next; {sets |cur_type| and |cur_tok| to next token} label switch,pass_digits,pass_fraction,done,found,exit; var @!c:ASCII_code; {the current character in the buffer} @!class:ASCII_code; {its class number} begin prev_type:=cur_type; prev_tok:=cur_tok; if empty_buffer then @; switch: c:=buffer[loc]; id_first:=loc; incr(loc); class:=char_class[c]; @; found:id_loc:=loc; cur_tok:=lookup; cur_type:=ilk[cur_tok]; exit:end; @ @d emit(#)==@t@>@+begin cur_type:=#; cur_tok:=id_first; return;@+end @= case class of digit_class:goto pass_digits; period_class:begin class:=char_class[buffer[loc]]; if class>period_class then goto switch {ignore isolated `\..'} else if class; isolated_classes: goto found; invalid_class:@; othercases do_nothing {letters, etc.} endcases;@/ while char_class[buffer[loc]]=class do incr(loc); goto found; pass_digits: while char_class[buffer[loc]]=digit_class do incr(loc); if buffer[loc]<>"." then goto done; if char_class[buffer[loc+1]]<>digit_class then goto done; incr(loc); pass_fraction:repeat incr(loc); until char_class[buffer[loc]]<>digit_class; done:emit(numeric_token) @ @= loop@+begin if buffer[loc]="""" then begin incr(loc); emit(string_token); end; if loc=limit then @; incr(loc); end @ @= begin err_print('! Incomplete string will be ignored'); goto switch; @.Incomplete string...@> end @ @= begin err_print('! Invalid character will be ignored'); goto switch; @.Invalid character...@> end @ @= begin get_line; if input_has_ended then emit(end_of_file); buffer[limit]:=carriage_return; loc:=0; start_of_line:=true; empty_buffer:=false; end @* Low-level output routines. The \TeX\ output is supposed to appear in lines at most |line_length| characters long, so we place it into an output buffer. During the output process, |out_line| will hold the current line number of the line about to be output. @= @!out_buf:array[0..line_length] of ASCII_code; {assembled characters} @!out_ptr:0..line_length; {number of characters in |out_buf|} @!out_line: integer; {coordinates of next line to be output} @ The |flush_buffer| routine empties the buffer up to a given breakpoint, and moves any remaining characters to the beginning of the next line. If the |per_cent| parameter is |true|, a |"%"| is appended to the line that is being output; in this case the breakpoint |b| should be strictly less than |line_length|. If the |per_cent| parameter is |false|, trailing blanks are suppressed. The characters emptied from the buffer form a new line of output. @p procedure flush_buffer(@!b:eight_bits;@!per_cent:boolean); {outputs |out_buf[1..b]|, where |b<=out_ptr|} label done; var j,@!k:0..line_length; begin j:=b; if not per_cent then {remove trailing blanks} loop@+ begin if j=0 then goto done; if out_buf[j]<>" " then goto done; decr(j); end; done: for k:=1 to j do write(tex_file,xchr[out_buf[k]]); if per_cent then write(tex_file,xchr["%"]); write_ln(tex_file); incr(out_line); if b @.mftmac@> @= out_ptr:=1; out_buf[1]:=" "; out_line:=1; write(tex_file,'\input mftmac'); @ When we wish to append the character |c| to the output buffer, we write `$|out|(c)$'; this will cause the buffer to be emptied if it was already full. Similarly, `$|out2|(c_1)(c_2)$' appends a pair of characters. A line break will occur at a space or after a single-nonletter \TeX\ control sequence. @d oot(#)==@;@/ if out_ptr=line_length then break_out; incr(out_ptr); out_buf[out_ptr]:=#; @d oot1(#)==oot(#)@+end @d oot2(#)==oot(#)@,oot1 @d oot3(#)==oot(#)@,oot2 @d oot4(#)==oot(#)@,oot3 @d oot5(#)==oot(#)@,oot4 @d out==@+begin oot1 @d out2==@+begin oot2 @d out3==@+begin oot3 @d out4==@+begin oot4 @d out5==@+begin oot5 @ The |break_out| routine is called just before the output buffer is about to overflow. To make this routine a little faster, we initialize position 0 of the output buffer to `\.\\'; this character isn't really output. @= out_buf[0]:="\"; @ A long line is broken at a blank space or just before a backslash that isn't preceded by another backslash. In the latter case, a |"%"| is output at the break. (This policy has a known bug, in the rare situation that the backslash was in a string constant that's being output ``verbatim.'') @p procedure break_out; {finds a way to break the output line} label exit; var k:0..line_length; {index into |out_buf|} @!d:ASCII_code; {character from the buffer} begin k:=out_ptr; loop@+ begin if k=0 then @; d:=out_buf[k]; if d=" " then begin flush_buffer(k,false); return; end; if (d="\")and(out_buf[k-1]<>"\") then {in this case |k>1|} begin flush_buffer(k-1,true); return; end; decr(k); end; exit:end; @ We get to this module only in unusual cases that the entire output line consists of a string of backslashes followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break the line by putting a |"%"| just before the last character. @= begin print_nl('! Line had to be broken (output l.',out_line:1); @.Line had to be broken@> print_ln('):'); for k:=1 to out_ptr-1 do print(xchr[out_buf[k]]); new_line; mark_harmless; flush_buffer(out_ptr-1,true); return; end @ To output a string of bytes from |byte_mem|, we call |out_str|. @p procedure out_str(@!p:name_pointer); {outputs a string} var @!k:0..max_bytes; {index into |byte_mem|} begin for k:=byte_start[p] to byte_start[p+1]-1 do out(byte_mem[k]); end; @ The |out_name| subroutine is used to output a symbolic token. Unusual characters are translated into forms that won't screw up. @p procedure out_name(@!p:name_pointer); {outputs a name} var @!k:0..max_bytes; {index into |byte_mem|} @!t:name_pointer; {translation of character being output, if any} begin for k:=byte_start[p] to byte_start[p+1]-1 do begin t:=translation[byte_mem[k]]; if t=0 then out(byte_mem[k]) else out_str(t); end; end; @ We often want to output a name after calling a numeric macro (e.g., `\.{\\1\{foo\}}'). @p procedure out_mac_and_name(@!n:ASCII_code; @!p:name_pointer); begin out("\"); out(n); if length(p)=1 then out_name(p) else begin out("{"); out_name(p); out("}"); end; end; @ Here's a routine that simply copies from the input buffer to the output buffer. @p procedure copy(@!first_loc:integer); {output |buffer[first_loc..loc-1]|} var @!k:0..buf_size; {|buffer| location being copied} begin for k:=first_loc to loc-1 do out(buffer[k]); end; @* Translation. The main work of \.{MFT} is accomplished by a routine that translates the tokens, one by one, with a limited amount of lookahead/lookbehind. Automata theorists might loosely call this a ``finite state transducer,'' because the flow of control is comparatively simple. @p procedure do_the_translation; label restart,reswitch,done,exit; var @!k:0..buf_size; {looks ahead in the buffer} @!t:integer; {type that spreads to new tokens} begin restart:if out_ptr>0 then flush_buffer(out_ptr,false); empty_buffer:=true; loop@+ begin get_next; if start_of_line then @; reswitch:case cur_type of numeric_token:@; string_token:@; indentation:out_str(tr_quad); end_of_line,mft_comment:@; end_of_file:return; @t\4@> @@; comment,recomment:@; verbatim:@; set_format:@; internal,special_tag,tag:@; end; {all cases have been listed} end; exit:end; @ @= if cur_type>=min_action_type then begin out("$"); start_of_line:=false; case cur_type of endit:out2("\")("!"); @.\\!@> binary,abinary,bbinary,ampersand,pyth_sub:out2("{")("}"); @.\{\}@> othercases do_nothing endcases; end else if cur_type=end_of_line then begin out_str(tr_skip); goto restart; end else if cur_type=mft_comment then goto restart @ Let's start with some of the easier translations, so that the harder ones will also be easy when we get to them. A string like |"cat"| comes out `\.{\\7"cat"}'. @= begin out2("\")("7"); copy(cur_tok); @.\\7@> end @ Similarly, the translation of `\.{sqrt}' is `\.{\\1\{sqrt\}}'. @= op: out_mac_and_name("1",cur_tok); @.\\1@> command: out_mac_and_name("2",cur_tok); @.\\2@> type_name: if prev_type=command then out_mac_and_name("1",cur_tok) else out_mac_and_name("2",cur_tok); endit: out_mac_and_name("3",cur_tok); @.\\3@> bbinary: out_mac_and_name("4",cur_tok); @.\\4@> bold: out_mac_and_name("5",cur_tok); @.\\5@> binary: out_mac_and_name("6",cur_tok); @.\\6@> path_join: out_mac_and_name("8",cur_tok); @.\\8@> colon: out_mac_and_name("?",cur_tok); @.\\?@> @ Here are a few more easy cases. @= as_is,sharp,abinary: out_name(cur_tok); double_back: out2("\")(";"); @.\\;@> semicolon: begin out_name(cur_tok); get_next; if cur_type<>end_of_line then if cur_type<>endit then out2("\")(" "); @.\\\char32@> goto reswitch; end; @ Some of the primitives have a fixed output (independent of |cur_tok|): @= backslash:out_str(translation["\"]); pyth_sub:out_str(tr_ps); less_or_equal:out_str(tr_le); greater_or_equal:out_str(tr_ge); not_equal:out_str(tr_ne); ampersand:out_str(tr_amp); @ The remaining primitive is slightly special. @= input_command: begin out_mac_and_name("2",cur_tok); out5("\")("h")("b")("o")("x"); @; end; @ File names have different formats on different computers, so we don't scan them with |get_next|. Here we use a rule that probably covers most cases satisfactorily: We ignore leading blanks, then consider the file name to consist of all subsequent characters up to the first blank, semicolon, comment, or end-of-line. (A |carriage_return| appears at the end of the line.) @= while buffer[loc]=" " do incr(loc); out5("{")("\")("t")("t")(" "); while (buffer[loc]<>" ")and(buffer[loc]<>"%")and(buffer[loc]<>";") and(loc= if buffer[loc]="/" then if char_class[buffer[loc+1]]=digit_class then {it's a fraction} begin out5("\")("f")("r")("a")("c"); copy(cur_tok); get_next; @.\\frac@> out2("/")("{"); get_next; copy(cur_tok); out("}"); end else copy(cur_tok) else copy(cur_tok) @ @= begin if length(cur_tok)=1 then out_name(cur_tok) else out_mac_and_name("\",cur_tok); @.\\\\@> get_next; if byte_mem[byte_start[prev_tok]]="'" then goto reswitch; case prev_type of internal:begin if (cur_type=numeric_token)or(cur_type>=min_suffix) then out2("\")(","); @.\\,@> goto reswitch; end; special_tag:if cur_type end; tag:begin if cur_type=tag then if byte_mem[byte_start[cur_tok]]="'" then goto reswitch; {a sequence of primes goes on the main line} if (cur_type=numeric_token)or(cur_type>=min_suffix) then @ else if cur_type=sharp then out_str(tr_sharp) else goto reswitch; end; end; {there are no other cases} end @ @= begin out2("_")("{"); loop@+ begin if cur_type>=min_suffix then out_name(cur_tok) else copy(cur_tok); if prev_type=special_tag then begin get_next; goto done; end; get_next; if cur_typenumeric_token then goto done; if cur_type=prev_type then if cur_type=numeric_token then out2("\")(",") @.\\,@> else if char_class[byte_mem[byte_start[cur_tok]]]=@| char_class[byte_mem[byte_start[prev_tok]]] then if byte_mem[byte_start[prev_tok]]<>"." then out(".") else out2("\")(","); end; done: out("}"); goto reswitch; end @ The tricky thing about comments is that they might contain \pb. We scan ahead for this, and replace the second `\.{\char'174}' by a |carriage_return|. @= begin if cur_type=comment then out2("\")("9"); @.\\9@> id_first:=loc; while (loc"|") do incr(loc); copy(id_first); if loc"|") do incr(k); buffer[k]:=carriage_return; end else begin if out_buf[out_ptr]="\" then out(" "); out4("\")("p")("a")("r"); goto restart; @.\\par@> end; end @ @= begin id_first:=loc; loc:=limit; copy(id_first); if out_ptr=0 then begin out_ptr:=1; out_buf[1]:=" "; end; goto restart; end @ @= begin out("$"); if (loc end; end @ @= begin start_of_line:=false; get_next; t:=cur_type; while cur_type>=min_symbolic_token do begin get_next; if cur_type>=min_symbolic_token then ilk[cur_tok]:=t; end; if cur_type<>end_of_line then if cur_type<>mft_comment then begin err_print('! Only symbolic tokens should appear after %%%'); @.Only symbolic tokens...@> goto reswitch; end; empty_buffer:=true; goto restart; end @* The main program. Let's put it all together now: \.{MFT} starts and ends here. @^system dependencies@> @p begin initialize; {beginning of the main program} print_ln(banner); {print a ``banner line''} @; @; @; do_the_translation; @; end_of_MFT:{here files should be closed if the operating system requires it} @; end. @ Some implementations may wish to pass the |history| value to the operating system so that it can be used to govern whether or not other programs are started. Here we simply report the history to the user. @^system dependencies@> @= case history of spotless: print_nl('(No errors were found.)'); harmless_message: print_nl('(Did you see the warning message above?)'); error_message: print_nl('(Pardon me, but I think I spotted something wrong.)'); fatal_message: print_nl('(That was a fatal error, my friend.)'); end {there are no other cases} @* System-dependent changes. This module should be replaced, if necessary, by changes to the program that are necessary to make \.{MFT} work at a particular installation. It is usually best to design your change file so that all changes to previous modules preserve the module numbering; then everybody's version will be consistent with the printed program. More extensive changes, which introduce new modules, can be inserted here; then only the index itself will get a new module number. @^system dependencies@> @* Index.